Dans cet article, nous considérons des équations différentielles conduites par des trajectoires rugueuses non-géométriques en utilisant le concept de trajectoire rugueuse ramifiée introduit dans (J. Differential Equations 248 (2010) 693–721). Nous montrons d’abord que celles-ci peuvent être définies de manière équivalente comme une fonction
In this article we consider rough differential equations (RDEs) driven by non-geometric rough paths, using the concept of branched rough paths introduced in (J. Differential Equations 248 (2010) 693–721). We first show that branched rough paths can equivalently be defined as
Mots-clés : rough paths, Hopf algebra, integration
@article{AIHPB_2015__51_1_207_0, author = {Hairer, Martin and Kelly, David}, title = {Geometric versus non-geometric rough paths}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {207--251}, publisher = {Gauthier-Villars}, volume = {51}, number = {1}, year = {2015}, doi = {10.1214/13-AIHP564}, mrnumber = {3300969}, zbl = {06412903}, language = {en}, url = {https://www.numdam.org/articles/10.1214/13-AIHP564/} }
TY - JOUR AU - Hairer, Martin AU - Kelly, David TI - Geometric versus non-geometric rough paths JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 207 EP - 251 VL - 51 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP564/ DO - 10.1214/13-AIHP564 LA - en ID - AIHPB_2015__51_1_207_0 ER -
%0 Journal Article %A Hairer, Martin %A Kelly, David %T Geometric versus non-geometric rough paths %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 207-251 %V 51 %N 1 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/13-AIHP564/ %R 10.1214/13-AIHP564 %G en %F AIHPB_2015__51_1_207_0
Hairer, Martin; Kelly, David. Geometric versus non-geometric rough paths. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 1, pp. 207-251. doi : 10.1214/13-AIHP564. https://www.numdam.org/articles/10.1214/13-AIHP564/
[1] Hopf Algebras. Cambridge Tracts in Mathematics 74. Cambridge Univ. Press, Cambridge, 1980. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. | Zbl
.[2] Trees, renormalization and differential equations. BIT 44 (2004) 425–438. | DOI | MR | Zbl
.
[3] Itô formula for an asymptotically
[4] A change of variable formula with Itô correction term. Ann. Probab. 38 (2010) 1817–1869. | DOI | MR | Zbl
and .[5] An algebraic theory of integration methods. Math. Comp. 26 (1972) 79–106. | DOI | MR | Zbl
.[6] Smoothness of the density for solutions to Gaussian Rough Differential Equations, 2012. | Zbl
, , and .[7] Algebraic structures of B-series. Found. Comput. Math. 10 (2010) 407–427. | DOI | MR | Zbl
, and .[8] Iterated path integrals. Bull. Amer. Math. Soc. 83 (1977) 831–879. | DOI | MR | Zbl
.[9] Hopf algebras, renormalization and noncommutative geometry. Comm. Math. Phys. 199 (1998) 203–242. | DOI | MR | Zbl
and .[10] Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108–140. | DOI | MR | Zbl
and .[11] Hopf Algebras: An Introduction. Monographs and Textbooks in Pure and Applied Mathematics 235. Marcel Dekker, New York, 2001. | MR | Zbl
, and .[12] Differential equations driven by rough paths: An approach via discrete approximation. Appl. Math. Res. Express. 2 (2007). | MR | Zbl
.
[13]
[14] An introduction to Hopf algebras of trees. Preprint, 2013.
.[15] Hardy Spaces on Homogeneous Groups. Mathematical Notes 28. Princeton Univ. Press, Princeton, NJ, 1982. | MR | Zbl
and .[16] A note on the notion of geometric rough paths. Probab. Theory Related Fields 136 (2006) 395–416. | DOI | MR | Zbl
and .[17] Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 369–413. | DOI | Numdam | MR | Zbl
and .[18] Multidimensional Stochastic Processes as Rough Paths. Theory and Applications. Cambridge Studies in Advanced Mathematics 120. Cambridge Univ. Press, Cambridge, 2010. | DOI | MR | Zbl
and .
[19]
[20] Hopf-algebraic structure of families of trees. J. Algebra 126 (1989) 184–210. | DOI | MR | Zbl
and .[21] Controlling rough paths. J. Funct. Anal. 216 (2004) 86–140. | DOI | MR | Zbl
.[22] Ramification of rough paths. J. Differential Equations 248 (2010) 693–721. | DOI | MR | Zbl
.[23] On the Butcher group and general multi-value methods. Computing (Arch. Elektron. Rechnen) 13 (1974) 1–15. | MR | Zbl
and .[24] An Introduction to Lie Groups and Lie Algebras. Cambridge Studies in Advanced Mathematics 113. Cambridge Univ. Press, Cambridge, 2008. | MR | Zbl
[25] On
[26] Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215–310. | DOI | MR | Zbl
.[27] Differential Equations Driven by Rough Paths. Lecture Notes in Mathematics 1908. Springer, Berlin, 2007. Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004. With an introduction concerning the Summer School by Jean Picard. | MR | Zbl
, and .[28] An extension theorem to rough paths. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007) 835–847. | DOI | Numdam | MR | Zbl
and .[29] Hopf algebras, from basics to applications to renormalization. ArXiv Mathematics e-prints, 2004.
.[30] Free Lie Algebras. London Mathematical Society Monographs. New Series. Oxford Science Publications 7. The Clarendon Press, Oxford Univ. Press, New York, 1993. | MR | Zbl
.[31] Hopf Algebras. Mathematics Lecture Note Series. W. A. Benjamin, New York, 1969. | MR | Zbl
.[32] Levy area for the free Brownian motion: Existence and non-existence. J. Funct. Anal. 208 (2004) 107–121. | DOI | MR | Zbl
.Cité par Sources :