Constructing center-stable tori
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 3, pp. 713-728.

We show that certain derived-from-Anosov diffeomorphisms on the 2-torus may be realized as the dynamics on a center-stable or center-unstable torus of a 3-dimensional strongly partially hyperbolic system. We also construct examples of center-stable and center-unstable tori in higher dimensions.

DOI : 10.1016/j.anihpc.2017.07.005
Mots clés : Partial hyperbolicity, Dynamical coherence, Invariant submanifolds
@article{AIHPC_2018__35_3_713_0,
     author = {Hammerlindl, Andy},
     title = {Constructing center-stable tori},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {713--728},
     publisher = {Elsevier},
     volume = {35},
     number = {3},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.07.005},
     mrnumber = {3778649},
     zbl = {1417.37115},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.07.005/}
}
TY  - JOUR
AU  - Hammerlindl, Andy
TI  - Constructing center-stable tori
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 713
EP  - 728
VL  - 35
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.07.005/
DO  - 10.1016/j.anihpc.2017.07.005
LA  - en
ID  - AIHPC_2018__35_3_713_0
ER  - 
%0 Journal Article
%A Hammerlindl, Andy
%T Constructing center-stable tori
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 713-728
%V 35
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.07.005/
%R 10.1016/j.anihpc.2017.07.005
%G en
%F AIHPC_2018__35_3_713_0
Hammerlindl, Andy. Constructing center-stable tori. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 3, pp. 713-728. doi : 10.1016/j.anihpc.2017.07.005. http://www.numdam.org/articles/10.1016/j.anihpc.2017.07.005/

[1] Bonatti, C.; Díaz, L.J. Persistent nonhyperbolic transitive diffeomorphisms, Ann. Math. (2), Volume 143 (1996) no. 2, pp. 357–396 | DOI | MR | Zbl

[2] Survey, C. Bonatti Towards a global view of dynamical systems, for the C1-topology, Ergod. Theory Dyn. Syst., Volume 31 (2011) no. 4, pp. 959–993 | MR | Zbl

[3] Bonatti, C.; Wilkinson, A. Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology, Volume 44 (2005) no. 3, pp. 475–508 | DOI | MR | Zbl

[4] S. Crovisier, R. Potrie, Introduction to partially hyperbolic dynamics, Unpublished course notes available online, 2015.

[5] Carrasco, P.; Rodriguez Hertz, F.; Rodriguez Hertz, M.A.; Ures, R. Partially hyperbolic dynamics in dimension 3, 2015 (preprint) | arXiv | MR

[6] Farrell, F.T.; Gogolev, A. On bundles that admit fiberwise hyperbolic dynamics, Math. Ann., Volume 364 (2016) no. 1–2, pp. 401–438 | MR | Zbl

[7] Franks, J.; Williams, B. Global Theory of Dynamical Systems, Proc. Internat. Conf., Northwestern Univ., Lect. Notes Math., Volume vol. 819, Springer, Berlin (1980), pp. 158–174 (Evanston, Ill., 1979) | DOI | MR | Zbl

[8] Gogolev, A. Surgery for partially hyperbolic dynamical systems I. Blow-ups of invariant submanifolds, 2016 (preprint) | arXiv | MR

[9] Gogolev, A.; Ontaneda, P.; Rodriguez Hertz, F. New partially hyperbolic dynamical systems I, Acta Math., Volume 215 (2015) no. 2, pp. 363–393 | DOI | MR | Zbl

[10] Hammerlindl, A. Techniques for establishing dominated splittings, 2017 http://users.monash.edu.au/~ahammerl/papers.html (Notes available at)

[11] Hammerlindl, A.; Potrie, R. Pointwise partial hyperbolicity in three-dimensional nilmanifolds, J. Lond. Math. Soc. (2), Volume 89 (2014) no. 3, pp. 853–875 | DOI | MR | Zbl

[12] Hammerlindl, A.; Potrie, R. Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group, J. Topol., Volume 8 (2015) no. 3, pp. 842–870 | DOI | MR | Zbl

[13] Hammerlindl, A.; Potrie, R. Partial hyperbolicity and classification: a survey, 2015 (preprint) | arXiv | MR

[14] Hirsch, M.; Pugh, C.; Shub, M. Invariant Manifolds, Lect. Notes Math., vol. 583, Springer-Verlag, 1977 | DOI | MR | Zbl

[15] Mañé, R. Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Am. Math. Soc., Volume 229 (1977), pp. 351–370 | DOI | MR | Zbl

[16] Rodriguez Hertz, F.; Rodriguez Hertz, M.A.; Ures, R. Tori with hyperbolic dynamics in 3-manifolds, J. Mod. Dyn., Volume 5 (2011) no. 1, pp. 185–202 | MR | Zbl

[17] Rodriguez Hertz, F.; Rodriguez Hertz, M.A.; Ures, R. A non-dynamically coherent example on T3 , Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 4, pp. 1023–1032 | DOI | Numdam | MR | Zbl

[18] Smale, S. Differentiable dynamical systems, Bull. Am. Math. Soc., Volume 73 (1967), pp. 747 (817) | DOI | MR | Zbl

[19] Wilson, F.W. Jr. Pasting diffeomorphisms of Rn , Ill. J. Math., Volume 16 (1972), pp. 222–233 | MR | Zbl

[20] Wilkinson, A. Stable ergodicity of the time-one map of a geodesic flow, Ergod. Theory Dyn. Syst., Volume 18 (1998) no. 6, pp. 1545–1588 (Thesis, May 1995) | DOI | MR | Zbl

Cité par Sources :