We show that certain derived-from-Anosov diffeomorphisms on the 2-torus may be realized as the dynamics on a center-stable or center-unstable torus of a 3-dimensional strongly partially hyperbolic system. We also construct examples of center-stable and center-unstable tori in higher dimensions.
@article{AIHPC_2018__35_3_713_0, author = {Hammerlindl, Andy}, title = {Constructing center-stable tori}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {713--728}, publisher = {Elsevier}, volume = {35}, number = {3}, year = {2018}, doi = {10.1016/j.anihpc.2017.07.005}, mrnumber = {3778649}, zbl = {1417.37115}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.07.005/} }
TY - JOUR AU - Hammerlindl, Andy TI - Constructing center-stable tori JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 713 EP - 728 VL - 35 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.07.005/ DO - 10.1016/j.anihpc.2017.07.005 LA - en ID - AIHPC_2018__35_3_713_0 ER -
Hammerlindl, Andy. Constructing center-stable tori. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 3, pp. 713-728. doi : 10.1016/j.anihpc.2017.07.005. http://www.numdam.org/articles/10.1016/j.anihpc.2017.07.005/
[1] Persistent nonhyperbolic transitive diffeomorphisms, Ann. Math. (2), Volume 143 (1996) no. 2, pp. 357–396 | DOI | MR | Zbl
[2] Towards a global view of dynamical systems, for the -topology, Ergod. Theory Dyn. Syst., Volume 31 (2011) no. 4, pp. 959–993 | MR | Zbl
[3] Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology, Volume 44 (2005) no. 3, pp. 475–508 | DOI | MR | Zbl
[4] S. Crovisier, R. Potrie, Introduction to partially hyperbolic dynamics, Unpublished course notes available online, 2015.
[5] Partially hyperbolic dynamics in dimension 3, 2015 (preprint) | arXiv | MR
[6] On bundles that admit fiberwise hyperbolic dynamics, Math. Ann., Volume 364 (2016) no. 1–2, pp. 401–438 | MR | Zbl
[7] Global Theory of Dynamical Systems, Proc. Internat. Conf., Northwestern Univ., Lect. Notes Math., Volume vol. 819, Springer, Berlin (1980), pp. 158–174 (Evanston, Ill., 1979) | DOI | MR | Zbl
[8] Surgery for partially hyperbolic dynamical systems I. Blow-ups of invariant submanifolds, 2016 (preprint) | arXiv | MR
[9] New partially hyperbolic dynamical systems I, Acta Math., Volume 215 (2015) no. 2, pp. 363–393 | DOI | MR | Zbl
[10] Techniques for establishing dominated splittings, 2017 http://users.monash.edu.au/~ahammerl/papers.html (Notes available at)
[11] Pointwise partial hyperbolicity in three-dimensional nilmanifolds, J. Lond. Math. Soc. (2), Volume 89 (2014) no. 3, pp. 853–875 | DOI | MR | Zbl
[12] Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group, J. Topol., Volume 8 (2015) no. 3, pp. 842–870 | DOI | MR | Zbl
[13] Partial hyperbolicity and classification: a survey, 2015 (preprint) | arXiv | MR
[14] Invariant Manifolds, Lect. Notes Math., vol. 583, Springer-Verlag, 1977 | DOI | MR | Zbl
[15] Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Am. Math. Soc., Volume 229 (1977), pp. 351–370 | DOI | MR | Zbl
[16] Tori with hyperbolic dynamics in 3-manifolds, J. Mod. Dyn., Volume 5 (2011) no. 1, pp. 185–202 | MR | Zbl
[17] A non-dynamically coherent example on , Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 4, pp. 1023–1032 | DOI | Numdam | MR | Zbl
[18] Differentiable dynamical systems, Bull. Am. Math. Soc., Volume 73 (1967), pp. 747 (817) | DOI | MR | Zbl
[19] Pasting diffeomorphisms of , Ill. J. Math., Volume 16 (1972), pp. 222–233 | MR | Zbl
[20] Stable ergodicity of the time-one map of a geodesic flow, Ergod. Theory Dyn. Syst., Volume 18 (1998) no. 6, pp. 1545–1588 (Thesis, May 1995) | DOI | MR | Zbl
Cité par Sources :