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Abstract

We show that certain derived-from-Anosov diffeomorphisms on the 2-torus may be realized as the dynamics on a center-stable 
or center-unstable torus of a 3-dimensional strongly partially hyperbolic system. We also construct examples of center-stable and 
center-unstable tori in higher dimensions.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Partially hyperbolic dynamical systems have received a large amount of attention in recent years. These systems 
display a wide variety of highly chaotic behavior [2], but they have enough structure to allow, in some cases, for the 
dynamics to be understood and classified [5,13].

A diffeomorphism f is strongly partially hyperbolic if there is a splitting of the tangent bundle into three invariant 
subbundles T M = Eu ⊕ Ec ⊕ Es such that the derivative Df expands vectors in the unstable bundle Eu, contracts 
vectors in stable bundle Es , and these dominate any expansion or contraction in the center direction Ec. (See section 2
for a precise definition.) The global properties of these systems are often determined by analyzing invariant foliations 
tangent to the subbundles of the splitting.

The bundles Eu and Es are uniquely integrable [14]. That is, there are foliations Wu and Ws such that any curve 
tangent to Eu or to Es lies in a single leaf of the respective foliation. For the center bundle Ec, however, the situation 
is more complicated. There may not be a foliation tangent to Ec. Even if such a foliation exists, the bundle may 
not be uniquely integrable since, in general, the center bundle is only Hölder continuous and not C1 regular. The 
first discovered examples of partially hyperbolic systems without center foliations were algebraic in nature. In these 
examples, both f and the splitting can be taken as smooth, and the center bundle is not integrable because it does not 
satisfy Frobenius’ condition of involutivity [18,20]. Such non-involutive examples are only possible if the dimension 
of the center bundle is at least two, and for a long time it was an open question if a one-dimensional center bundle was 
necessarily integrable.
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Rodriguez Hertz, Rodriguez Hertz, and Ures recently answered this question by constructing a counterexam-
ple [17]. They defined a partially hyperbolic system on the 3-torus with a one-dimensional center bundle which does 
not integrate to a center foliation. In fact, the center bundle is uniquely integrable everywhere except for an invariant 
embedded 2-torus tangent to Ec ⊕Eu where the center curves approaching from either side of the torus meet in cusps. 
This discovery has shifted our view on the possible dynamics a partially hyperbolic system can possess, and leads to 
questions of how commonly invariant submanifolds of this type occur in general. In this paper, we build further ex-
amples of partially hyperbolic systems having compact submanifolds tangent either to Ec ⊕ Eu or Ec ⊕ Es , both in 
dimension 3 and in higher dimensions.

In the construction in [17], the dynamics on the 2-torus tangent to Ec ⊕ Eu is Anosov. In fact, it is given by a 
hyperbolic linear map on T2, the cat map. It has long been known that a weakly partially hyperbolic system, that is, a 
diffeomorphism g : T2 → T2 with a splitting of the form Ec ⊕ Eu or Ec ⊕ Es , need not be Anosov. Therefore, one 
can ask if a weakly partially hyperbolic system which is not Anosov may be realized as the dynamics on an invariant 
2-torus sitting inside a 3-dimensional strongly partially hyperbolic system. We show, in fact, that derived-from-Anosov 
dynamics with sinks or sources may be realized on these tori.

To state the results, we say that diffeomorphisms f0 and f1 of the 2-torus are dom-isotopic if there an isotopy 
{ft }t∈[0,1] such that every ft has a dominated splitting.

Theorem 1.1. Let g : T2 → T2 be a weakly partially hyperbolic diffeomorphism which is dom-isotopic to a linear 
toral automorphism. Then, there is an embedding i : T2 → T3 and a strongly partially hyperbolic diffeomorphism 
f : T3 → T3 such that i(T2) is a center-stable or center-unstable torus and i−1 ◦ f ◦ i = g.

To be precise, a center-stable torus is an embedded copy of TD with D ≥ 2 which is tangent to Ecs
f := Ec

f ⊕ Es
f . 

Similarly, a center-unstable torus is tangent to Ecu
f := Ec

f ⊕ Eu
f . We also use the terms cs-torus and cu-torus as 

shorthand.
If the diffeomorphism g has a weakly partially hyperbolic of splitting of the form Es

g ⊕ Ec
g , then i(T2) will be a 

cs-torus. If the splitting is of the form Ec
g ⊕ Eu

g , then i(T2) will be a cu-torus. In the case where the derivative of g
preserves the orientation of the center bundle, Ec

g, we may be more specific about the construction.

Theorem 1.2. Let g0 : T2 → T2 be a weakly partially hyperbolic diffeomorphism which preserves the orientation of 
its center bundle and is dom-isotopic to a linear Anosov diffeomorphism A : T2 → T2 and let 0 < ε < 1

2 . Then there 
is a strongly partially hyperbolic diffeomorphism f : T3 → T3 such that

(1) f (x, t) = (A(x), t) for all (x, t) ∈ T3 with |t | > ε,
(2) f (x, t) = (g0(x), t) for all (x, t) ∈ T3 with |t | < ε

2 , and
(3) T2 × 0 is either a center-stable or center-unstable torus.

Since the construction is local in nature, different weakly partially hyperbolic diffeomorphisms may be inserted 
into the system at different places.

Corollary 1.3. Suppose that A : T2 → T2 is a hyperbolic linear automorphism and for each i ∈ {1, . . . , n} that gi :
T2 → T2 is a weakly partially hyperbolic diffeomorphism which preserves the orientation of its center bundle and 
is dom-isotopic to A. Let {t1, . . . , tn} be a finite subset of the circle, S1. Then there is a strongly partially hyperbolic 
diffeomorphism f : T3 → T3 such that

(1) f (x, ti ) = (gi(x), ti ) for each ti and all x ∈ T2, and
(2) each T2 × ti is a center-stable or center-unstable torus.

In the above theorems, the examples may be constructed in such a way that the resulting diffeomorphism f : T3 →
T3 is not dynamically coherent. See section 4 for details.

We also note that the presence of a cs or cu-torus affects the dynamics only in a neighborhood of that torus and 
does not place global restrictions on the dynamics on T3. For instance, one could easily construct a system which has 
a cs or cu-torus T2 × 0 and has a robustly transitive blender elsewhere on T3 [1].
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The technical assumption of dom-isotopy can likely be relaxed. Gourmelon and Potrie and have announced a result 
showing that in the C1-open set of diffeomorphisms of T2 with dominated splittings, the subset of diffeomorphisms 
isotopic to a given hyperbolic toral automorphism is connected. Should this hold, Theorem 1.1 would imply that any 
weakly partially hyperbolic diffeomorphism on T2 may be realized as the dynamics on a center-stable or center-unsta-
ble torus.

The original construction of Rodriguez Hertz, Rodriguez Hertz, and Ures on the 3-torus may be viewed as a skew 
product with Anosov dynamics in the fibers. In fact, the example can be given as a map of the form

F(x, v) = (f (x),Av + h(x))

where f is a Morse–Smale diffeomorphism of the circle, A is the cat map on T2, and h : S1 → T2 is smooth. The 
diffeomorphism f has a sink at a point x0 and the fiber x0 × T2 over this sink gives the embedded 2-torus tangent 
to Ecu

F .
This description of F naturally suggests a way to construct higher-dimensional examples of the same form. We 

will show that, starting from any diffeomorphism f of any closed manifold M , one may construct a strongly partially 
hyperbolic diffeomorphism F of M × TD using sinks of f to construct center-unstable tori for F and sources to 
construct center-stable tori.

Theorem 1.4. Let f0 : M → M be a diffeomorphism and X ⊂ M a finite invariant set such that every x ∈ X is either 
a periodic source or sink. Then there is a strongly partially hyperbolic diffeomorphism F : M ×TD → M ×TD of the 
form

F(x, v) = (f (x),Av + h(x))

such that f is isotopic to f0 and, for each x ∈ X, the submanifold x × TD is tangent either to Ecs or Ecu.

In dimension 3, the presence of a compact submanifold tangent to Ecs or Ecu has strong consequences on the 
global topology of the manifold. In fact, Rodriguez Hertz, Rodriguez Hertz, and Ures showed that the 3-manifold can 
only be one of a few possibilities [16]. The proof of Theorem 1.4 uses a local argument and the global topology of M
has no impact on the construction. This suggests that in higher dimensions, compact submanifolds tangent to Ecs and 
Ecu may arise naturally in many examples of partially hyperbolic systems.

Theorem 1.4 is stated for the trivial fiber bundle M × TD only for the sake of simplicity. As the proof is entirely 
local in nature, the same technique may be used to introduce center-stable and center-unstable tori in a system defined 
on a non-trivial fiber bundle, so long as the dynamics in the fibers is given by a linear Anosov map. By adapting the 
examples in [9], it might be possible to define a system with a center-stable torus so that the total space is simply 
connected. See also [8] for further constructions, and [6] for conditions which imply that the fiber bundle must be 
trivial. We suspect that, just as in the case of dimension 3, the future study of compact center-stable submanifolds in 
higher dimensions will be full of surprises.

Section 2 gives the definitions of domination and partial hyperbolic and establishes several preliminary results. 
Section 3 gives the proof of Theorem 1.2. Section 4 generalizes this construction and proves Theorem 1.1. Finally, 
section 5 handles higher-dimensional examples and proves Theorem 1.4.

2. Preliminaries

Let f be a diffeomorphism of a Riemannian manifold M and let � ⊂ M be a compact invariant subset. A splitting 
of T�M into two non-zero bundles T�M = E ⊕ Ê is dominated if it is invariant under the derivative of f and there 
is k ≥ 1 such that ‖Df kv‖ < ‖Df kv̂‖ for all x ∈ � and unit vectors v ∈ E(x) and v̂ ∈ Ê(x).

An invariant bundle E ⊂ T M is expanding if there is k ≥ 1 such that ‖Dkv‖ > 2 for all unit vectors v ∈ E. The 
bundle is contracting if there is k ≥ 1 such that ‖Dkv‖ < 1

2 for all unit vectors v ∈ E. A diffeomorphism f of a closed 
manifold M is weakly partially hyperbolic if it has a dominated splitting either of the form T M = Es ⊕ Ec with Es

contracting or T M = Es ⊕ Eu with Eu expanding.
A diffeomorphism f of a closed manifold M is strongly partially hyperbolic if it has a splitting T M = Es ⊕ Ec ⊕

Eu where Es is contracting, Eu is expanding and both (Es ⊕Ec) ⊕Eu and Es ⊕ (Ec ⊕Eu) are dominated splittings.
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Notation. For a non-zero vector v ∈ T M and n ∈ Z, let vn denote the unit vector

vn = Df nv

‖Df nv‖ .

Of course, vn depends on the diffeomorphism f : M → M being studied, so this notation is used only when the f
under study is clear.

To show that the constructions given in this paper are strongly partially hyperbolic, we use the following two 
results.

Proposition 2.1. Suppose f is a diffeomorphism of a manifold M , and Y and Z are compact invariant subsets such 
that

(1) all chain recurrent points of f |Y lie in Z,
(2) Z has a dominated splitting TZM = E ⊕ Ê with d = dimE, and
(3) for every x ∈ Y \ Z, there is a point y in the orbit of x and a subspace Vy of dimension d such that for any 

non-zero v ∈ Vy , each of the sequences vn and v−n accumulates on a vector in TZM \ E as n → +∞.

Then the dominated splitting on Z extends to a dominated splitting on Y ∪ Z.

For a diffeomorphism f , let NW(f ) denote the non-wandering set.

Proposition 2.2. Suppose f is a diffeomorphism of a compact manifold M , T M = Es ⊕ Ec ⊕ Eu is an invariant 
splitting, and there is k ≥ 1 such that

‖Tf kvs‖ < ‖Tf kvc‖ < ‖Tf kvu‖ and ‖Tf kvs‖ < 1 < ‖Tf kvu‖
for all x ∈ NW(f ) and unit vectors vu ∈ Eu(x), vc ∈ Ec(x), and vs ∈ Es(x). Then, f is partially hyperbolic.

The techniques used to prove the above results are similar in form to results developed by Mañé to study quasi-
Anosov systems [15, Lemma 1.9], by Hirsch, Pugh, Shub in regards to normally hyperbolicity [14, Theorem 2.17], 
and by Franks and Williams in constructing non-transitive Anosov flows [7, Theorem 1.2]. For further details and the 
proofs of Propositions 2.1 and 2.2, see [10].

Proposition 2.3. If g0 and g1 are dom-isotopic diffeomorphisms defined on T2, then there is a C1 function g : T2 ×
[0, 1] → T2 such that g0 = g(·, 0), g1 = g(·, 1) and each g(·, t) has a dominated splitting.

Proof. As diffeomorphisms with a dominated splitting comprise an open subset of all C1 diffeomorphisms, we may 
assume there is a piecewise linear dom-isotopy G : T2 × [0, 1] → T2 such that G(·, 0) = g0 and G(·, 1) = g1. Define 
a smooth bijection α : [0, 1] → [0, 1] such that the derivative of α equals zero at every time ti where G changes from 
one linear function to the next. One may then show that g(x, t) = G(x, α(t)) is the desired C1 function. �

In the C1 topology, the dominated splitting depends continuously on the diffeomorphism. By adapting results on 
dominated splittings and cone families (see, for instance, [4, Section 2]), one can further show the following.

Corollary 2.4. For a function g as in Proposition 2.3, there is a constant η > 0 and a family C of convex cones such 
that if, at a point (x, t) ∈ T2 × [0, 1], the dominated splitting is given by

TxT
2 = E(x, t) ⊕ Ê(x, t),

then the cone C (x, t) ⊂ TxT2 satisfies the properties

(1) Ê(x, t) ⊂ C (x, t),
(2) E(x, t) ∩ C (x, t) = 0, and
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Fig. 1. A depiction of the Ecu and Eu subbundles in the construction given in section 3. Consider a point (x, s) ∈ T2 × (e, ε) and its forward 
orbit (xn, sn) := f n(x, s). For simplicity, we assume the sequence {xn} is constant. The construction of f ensures that {sn} decreases towards 0. 
Subfigure (a) shows, for each n ≥ 0, the two-dimensional subbundle Ecu(xn, sn). When sn > d , the Ecu subbundle is vertical. When c < sn < d , 
a shearing effect in the dynamics pushes the Ecu planes to be closer to horizontal. When n is large and therefore 0 < sn < a, the strong vertical 
contraction means the slopes of these planes tend to zero as n tends to +∞. Subfigure (b) shows, for each n ≥ 0, the one-dimensional subbundle 
Eu(xn, sn) lying inside the horizontal plane TxnT2 × 0. It also depicts the cone field C (xn, sn) determined by Corollary 2.4. Both the horizontal 
planes and Eu are unaffected by the shearing. In the region T2 × [a, b], the Eu direction moves around as different horizontal maps g(·, t) are 
applied. However, the Eu direction always stays within the cone field C .

(3) Dg(C (x, s)) lies in the interior of C (g(x, t), t)
for all s ∈ [0, 1] with |s − t | < η.

The next lemma is used to determine the effect of shearing in the proof of Theorem 1.2.

Lemma 2.5. Suppose A : T2 → T2 is a hyperbolic toral automorphism which preserves the orientation of its stable 
bundle. Lift A to a linear map on R2 and let Eu

A(0) denote the lifted unstable manifold through the origin. For any 
C > 1, there is z ∈ Z2 such that dist

(
ζ · A(z) + ξ · z, Eu

A(0)
) ≥ C(ζ + ξ) for all ζ, ξ ≥ 0.

The proof is left to the reader. Note how the condition on orientation is necessary.

3. Proof of Theorem 1.2

We now construct the diffeomorphism in the conclusion of Theorem 1.2 and show that it is strongly partially 
hyperbolic. Let A : T2 → T2, g0 : T2 → T2, and ε > 0 be as in the theorem. Choose constants ε/2 < a < b < c < d <

e < ε.
We give an intuitive description of the construction before diving into the details. The diffeomorphism f will 

contract the region T2 × (−e, e) down towards T2 × 0. In the region T2 × [c, d], a strong shear pushes the vertical 
center direction to be almost horizontal. Then in the region T2 × [a, b], the dynamics in the horizontal direction is 
changed from A to g0. Finally in T2 ×[0, a), the vertical contraction is dialed up so that T2 ×0 is a normally attracting 
submanifold. The effect of the dynamics on the Ecu and Eu subbundles is shown in Fig. 1.

Let g : T2 × [0, 1] → T2 be a C1 function as in Proposition 2.3. By a reparameterization of the [0, 1] coordinate, 
assume without loss of generality that g(·, t) = g0 for all t ≤ a and g(·, t) = A for all t ≥ b. With g now determined, 
let η > 0 be as in Corollary 2.4.
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Fix a value λ ∈ (0, 1) such that ‖Dg0v‖ > 2λ for all unit vectors v in the tangent bundle of T2. Define a smooth 
diffeomorphism h : [0, ε] → [0, ε] with the following properties.

(1) h(s) = λs for all s ∈ [0, ε/2],
(2) h(s) < s for all s ∈ (0, e),
(3) |h(s) − s| < η for all s ∈ [a, b],
(4) h2(d) < c < h(d), and
(5) h(s) = s for all s ∈ [e, ε].

Define a smooth bump function ρ : [0, ε] → [0, 1] such that

(1) ρ(s) = 0 for all s ∈ [0, c],
(2) ρ′(s) > 0 for all s ∈ (c, d), and
(3) ρ(s) = 1 for all s ∈ [d, ε].

Let z be a non-zero element of Z2. The precise conditions for choosing z will be given later in this section.
With these objects in place, define f for (x, s) ∈ T2 × [0, ε] by

f (x, s) = (g(x, s) + ρ(s) · z,h(s)).

Extend f to all of T2 × [−ε, ε] by the requirement that (y, t) = f (x, s) if and only if (y, −t) = f (x, −s). Finally, set 
f (x, s) = (A(x), s) for all (x, s) /∈ T2 × [−ε, ε].

We now consider the effect of Df on vectors of the tangent bundle. The identity T3 = T2 × S1 means that, for a 
point p = (x, s), a tangent vector u ∈ TpT3 may be decomposed as u = (v, w) with v ∈ TxT2 and w ∈ TsS

1. During 
the proof, we will routinely write vectors this way and refer to v and w as the horizontal and vertical components 
of u. The linear toral automorphism A gives a linear splitting TxT2 = Eu

A(x) ⊕Es
A(x) which further defines subspaces 

Eu
A(x) ×0 and Es

A(x) ×0 of TpT3. Also, if C (p) = C (x, s) ⊂ TxT2 is the cone given by Corollary 2.4, then C (p) ×0
may be considered as a subset of TpT3.

Lemma 3.1. If p = (x, s) ∈ T2 ×[c, ε] and y ∈ T2 is such that Df (p) = (y, h(s)), then Dfp(Eu
A(x) ×0) = Eu

A(y) ×0.

Proof. In this region, f is given by f (x, s) = (A(x) + ρ(s)z, h(s)) and both A and the translation x �→ x + ρ(s)z

leave the linear unstable foliation of A invariant. �
Lemma 3.2. If p ∈ T2 × [0, c], then Df (C (p) × 0) ⊂ C (f (p)) × 0.

Proof. This follows directly from the use of η > 0 in the definition of f . �
Lemma 3.3. f has a dominated splitting of the form Eu ⊕> Ecs with dimEu = 1.

Proof. We will apply Proposition 2.1 with Y = T2 × [0, e] and Z = T2 × {0, e}. Note that Z has a well-defined 
partially hyperbolic splitting. If p = (x, e) ∈ T2 × e, then Eu

f (p) = Eu
A(x) × 0. If p = (x, 0) ∈ T2 × 0, then Eu

f (p) =
Eu

g0
(x) × 0.

Consider an orbit {f n(p)}n∈Z where p ∈ T2 ×(0, e). Up to shifting along the orbit, one may assume p = (x, s) with 
s ∈ [h(c), c]. Define Vp ⊂ TpT3 by Vp = Eu

A(x) ×0 and let u be a non-zero vector in Vp . Write pn = (xs, sn) = f n(p)

for all n ∈ Z. First, consider the backwards orbit of u. By Lemma 3.1, u−m ∈ Eu
A(x−m) × 0 for all m > 0. For a 

subsequence {mj }, if p−mj
converges to a point p− = (x−, e), then u−mj converges to a vector in Eu

A(x−) × 0 =
Eu

f (p−).
Now consider the forward orbit of u. By Lemma 3.2, un ∈ C (xn, sn) × 0 for all n > 0. If a subsequence {pnj

}
converges to a point p+ = (x+, 0) and vnj converges to a vector v+ ∈ TxT2 × 0, then v+ ∈ C (p+) × 0. In particular, 
v+ does not lie in Es (x+) × 0.
A
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This shows that the conditions of Proposition 2.1 are satisfied and a dominated splitting exists on all of T2 × [0, e]. 
By symmetry, a dominated splitting exists on T2 × [−e, 0]. Since f is linear outside of T2 × [−e, e], there is a global 
dominated splitting on all of T3. �

For a non-zero vector u ∈ T T3 with horizontal component v ∈ T T2 and vertical component w ∈ T S1, define the 
slope of u by

slope(u) = ‖w‖
‖v‖ ∈ [0,∞].

Note that f maps a horizontal torus T2 × s to a horizontal torus T2 × h(s) and therefore slope(u) = 0 implies that 
slopeDf (u) = 0.

Lemma 3.4. If p ∈ T2 × [0, ε2 ] and u ∈ TpT3 with slope(u) < ∞, then

slopeDf (u) < 1
2 slope(u).

Proof. This follows from the choice of λ at the start of the section. �
Lemma 3.5. There is k ≥ 1 and δ > 0 such that if p ∈ T2 × [h3(d), h2(d)] and u ∈ TpT3 with slope(u) < δ, then 
f k(p) ∈ T2 × [0, ε2 ] and slopeDf k(u) < 1.

Proof. Since h(s) < s for all s ∈ (0, e), there is k ≥ 1 so that s < h2(d) implies hk(s) < ε/2. Let K be the compact 
set of all unit vectors based at points in T2 × [h3(d), h2(d)], and let K0 ⊂ K be those vectors with slope zero. Define

γ : K → [0,∞], v �→ slopeDf k(v).

Since γ (K0) = {0} and γ is uniformly continuous, one may find δ > 0 as desired. �
Since h2(d) < c, the choice of z ∈ Z2 does not affect the definition of f in the region T2 × [0, h2(d)]. Hence, the 

values k and δ may be determined before specifying z. The next lemma, however, does rely on this choice and the 
conditions on z are given in the lemma’s proof.

Lemma 3.6. For any δ > 0, the z ∈ Z2 used in the definition of f may be chosen such that the following property 
holds:

If p = (x, s) ∈ T2 × [h(d), d] and u ∈ Eu
A(x) × TsS

1 ⊂ TpT3, then slopeDf 2(u) < δ.

Proof. Write u = (v, w) as before. If w = 0, then slopeDf 2(u) = 0. Therefore, one need only consider the case 
where w is non-zero. Up to rescaling the vector u, assume w is a unit vector pointing in the “up” direction of S1. That 
is, pointing in the direction of increasing s. By calculating the derivative of

f 2(x, s) = (
A2(x) + ρ(s) · A(z) + (ρ ◦ h)(s) · z, h2(s)

)
one can show that

Df 2(v,w) = (
A2(v) + ρ′(s) · A(z) + (ρ ◦ h)′(s) · z, Dh2(w)

)
.

Define

α := min
{
ρ′(s) + (ρ ◦ h)′(s) : s ∈ [h(d), d]}

and

β := max
{
(h2)′(s) : s ∈ [h(d), d]}

and note that α > 0. For some C > 1, if z is given by Lemma 2.5, then

‖A2(v) + ρ′(s) · A(z) + (ρ ◦ h)′(s) · z‖ ≥
dist

(
ρ′(s) · A(z) + (ρ ◦ h)′(s) · z, Eu

A(0)
)
> Cα

and therefore slopeDf 2(u) < β/Cα. Take C large enough that β/Cα < δ. �
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For the remainder of the proof, assume z was chosen so that Lemma 3.6 holds with δ > 0 given by Lemma 3.5. 
The last three lemmas then combine to show the following.

Corollary 3.7. If p = (x, s) ∈ T2 × [h(d), d] and u ∈ Eu
A(x) × 0 ⊂ TpT3, then

lim
n→+∞ slopeDf n(u) = 0.

Lemma 3.8. f has a dominated splitting of the form Ecu ⊕> Es with dimEcu = 2.

Proof. This proof follows the same general outline as the proof of Lemma 3.3. Let Y and Z be as in that proof. If 
p = (x, e) ∈ T2 × e, then Ecu

f (p) = Eu
A(x) × TeS

1. If p = (x, 0) ∈ T2 × 0, then Eu
f (p) = TxT2 × 0.

Now, consider an orbit {f n(p)}n∈Z where p ∈ T2 × (0, e). Up to shifting along the orbit, one may assume p =
(x, s) with s ∈ [h(d), d]. Define Vp ⊂ TpT3 by Vp = Eu

A(x) × TsS
1 and let u be a non-zero vector in Vp . Write 

pn = (xn, sn) = f n(p) for all n ∈ Z. First, consider the backwards orbit of u. Note that

Df n(Vp) = Eu
A(xn) × TsnS

1

for all n < 0. Hence, if {u−mj } is a convergent subsequence, then p−mj
converges to a point p− ∈ T2 × e, and u−mj

converges to a vector in Ecu
f (p−). In the other direction, Corollary 3.7 implies that slope(un) tends to 0 as n → ∞. 

If {unj } is a convergent subsequence, then pnj
converges to a point p+ ∈ T2 × 0, and un

j converges to a vector in 

Ecu
f (p+). One may then use Proposition 2.1 to show that the dominated splitting extends to all of T3. �
Now that the global invariant dominated splittings Eu ⊕ Ecs and Ecu ⊕ Es are known to exist, Proposition 2.2

implies that f is strongly partially hyperbolic on all of T3.

4. Further constructions

Rodriguez Hertz, Rodriguez Hertz and Ures gave two different constructions of a system on the 3-torus with an 
invariant center-unstable 2-torus [17]. In the first of these constructions, the system is not dynamically coherent as 
there is no invariant foliation tangent to Ec. In the second of their constructions, the center bundle Ec is integrable, 
but not uniquely integrable. The construction we gave in section 3 corresponds to the first of these cases.

Proposition 4.1. The construction of f given in section 3 is not dynamically coherent.

Proof. The diffeomorphism f leaves the foliation of horizontal planes invariant. Therefore, if a vector u in the tangent 
bundle T T3 has a non-zero vertical component, then Df(u) also has a non-zero vertical component. If p ∈ T2 ×
[h(d), e], and u is a unit vector in Ec

f (p), then u has a non-zero vertical component. By iterating forward, one sees 

that the same property holds for any p ∈ T2 × (0, e]. Hence, one may choose an orientation for the line bundle Ec
f on 

T2 × (0, e] so that the center direction always points in the direction of decreasing s. That is, the orientation always 
points towards T2 × 0.

This choice extends continuously to T2 ×[0, e]. Further, by the symmetry of the construction, the center orientation 
may be extended to T2 × [−e, e], and on both sides, the center orientation points towards T2 × 0. This means that 
any parameterized curve γ : [0, +∞) → T3 that starts in T2 × 0, stays tangent to Ec, and agrees with the orientation 
of Ec, must remain for all time inside of T2 × 0.

The constructed f is homotopic to A times the identity map on S1. If f were dynamically coherent, then by the leaf 
conjugacy given in [11, Theorem 1.3], there would be a circle tangent to Ec

f though every point in T3. In particular, 

there would be an invariant foliation of center circles lying in T2 × 0. As the dynamics g0 on T2 × 0 is homotopic to 
a hyperbolic toral automorphism, this is not possible and gives a contradiction. �

We now look at ways in which the construction in the previous section may be modified. The definition of f may 
be stated piecewise as
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Fig. 2. Four possible ways in which the center bundle may behave near a center-unstable torus with derived-from-Anosov dynamics. Shown here 
are lines tangent to the Ec direction inside a cs-leaf. In each subfigure, the cs-leaf intersects the cu-torus in a horizontal line passing through the 
middle of the subfigure. In this example, the middle of this line intersects the basin of repulsion of a repelling fixed point inside the cu-torus so that 
there are no cusps here.

f (x, s) =

⎧⎪⎨
⎪⎩

(
g(x, s) + ρ(s) · z, h(s)

)
, if s ∈ [0, ε](

g(x,−s) + ρ(−s) · z, −h(−s)
)
, if s ∈ [−ε,0](

Ax, s
)
, if s /∈ [−ε, ε].

Recall that z ∈ Z2 was chosen to satisfy the conclusions of Lemma 2.5. If k is any non-zero integer, then the product 
k · z ∈ Z2 also satisfies those same conclusions. Thus, for any choice of non-zero integers k1 and k2, one may show 
that the function defined by

(x, s) �→

⎧⎪⎨
⎪⎩

(
g(x, s) + k1ρ(s) · z, h(s)

)
, if s ∈ [0, ε](

g(x,−s) + k2ρ(−s) · z, −h(−s)
)
, if s ∈ [−ε,0](

Ax, s
)
, if s /∈ [−ε, ε]

is strongly partially hyperbolic with a cu-torus at T2 × 0.
The choices of sign for k1 and k2 give four different ways to realize g0 as the dynamics on an invariant cu-torus. 

These correspond to the two different ways the center bundle can approach a horizontal direction on either side of 
T2 × 0 and are depicted in Fig. 2. The cases (a) and (b) in the figure are not dynamically coherent, as may be shown 
by the argument in the proof of Proposition 4.1. From the figure, it appears that the dynamics depicted in each of 
cases (c) and (d) has an invariant center foliation with leaves which topologically cross the torus. Rigorously proving 
the existence of this center foliation will require a sophisticated analysis of the Franks semiconjugacy of the system 
and its relation to the branching foliations of Brin, Burago and Ivanov. This work is left to a future paper.
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The above modifications to the construction suggest a way to prove Theorem 1.1 in the case where g0 reverses the 
orientation of Ec.

Proof of Theorem 1.1. Let g0 be weakly partially hyperbolic with a splitting of the form Ec ⊕Eu. The case where g0
preserves the orientation of Ec was already handled in section 3, so assume here that g0 reverses the center orientation. 
Then g0 is homotopic to a hyperbolic toral automorphism A which reverses the orientation of its stable bundle Es

A. 
Analogously to Lemma 2.5, for any C > 1, there is z ∈ Z2 such that dist

(
ζ · A(z) − ξ · z, Eu

A(0)
) ≥ C(ζ + ξ) for all 

ζ, ξ ≥ 0. (Note now the minus sign before ξ · z.)
Our constructed diffeomorphism on T3 will be the result of modifying the linear map A ×(− id) defined on T2 ×S1. 

Fix a small ε > 0 and define h : [0, ε] → [0, ε] and ρ : [0, ε] → [0, 1] with the properties as listed in section 3. Define f

by

f (x, s) =

⎧⎪⎨
⎪⎩

(
g(x, s) + ρ(s) · z, −h(s)

)
, if s ∈ [0, ε](

g(x,−s) − ρ(−s) · z, h(−s)
)
, if s ∈ [−ε,0](

Ax, −s
)
, if s /∈ [−ε, ε].

If s ∈ [h(d), d], then

f 2(x, s) = (A2(x) + ρ(s) · A(z) − (ρ ◦ h)(s) · z,h2(s)).

The above analogue of Lemma 2.5 then establishes an analogue of Lemma 3.6 in this context. The other parts of the 
proof in section 3 are also easily adapted and one may show that f is strongly partially hyperbolic. �

For simplicity, the previous section constructed a diffeomorphism on T3. It is a simple matter to apply the same 
techniques to a 3-manifold defined by the suspension of either an Anosov map or “minus the identity” on T2. The 
important condition in each case is that there is a strongly partially hyperbolic map and an invariant subset of the 
manifold homeomorphic to T2 × [−ε, ε] where the dynamics is given by A × id. As shown in [16], these are the only 
orientable 3-manifolds which allow a torus tangent to Ecu or Ecs .

As explored in [3, Section 4] and [12, Appendix A], it is possible to define partially hyperbolic diffeomorphisms on 
non-orientable manifolds which are double covered by the 3-torus. A similar construction works in the current setting 
to define one-sided center-stable and center-unstable tori.

Proposition 4.2. For any weakly partially hyperbolic diffeomorphism g0 : T2 → T2 which preserves its center ori-
entation, there is a non-orientable 3-manifold M , an embedding i : T2 → M and a strongly partially hyperbolic 
diffeomorphism f : T3 → T3 such that the one-sided torus i(T2) is tangent either to Ecs

f or Ecu
f and i−1 ◦ f ◦ i = g0.

Proof. Assume g0 has a splitting of the form Eu ⊕ Ec and construct f : T3 → T3 as in section 3. Assume T3 is 
defined as R3/Z3 and lift f to a map f̃ : R3 → R3 such that f̃ (R2 × 0) = R2 × 0. Construct a new closed 3-manifold 
by quotienting R3 = R2 ×R by the group generated by the translations (v, s) �→ (v, s + 1) and (v, s) �→ (v + (0, 1), s)
and the isometry (v, s) �→ (v + (1, 0), −s). �

This concludes our construction of examples in dimension 3. The rest of paper handles constructions in higher 
dimension.

5. Compact center-stable manifolds of higher dimension

This section proves Theorem 1.4. In fact, we will prove the following restatement of the theorem which gives more 
technical details about the nature of the constructed diffeomorphism F .

Proposition 5.1. Let f0 : M → M be a diffeomorphism, let X ⊂ M be a finite invariant set such that every x ∈ X is 
either a periodic source or sink, and let U be a neighborhood of X. Then, there are a diffeomorphism f : M → M , 
a toral automorphism A : TD → TD , a smooth map h : M → TD , and a diffeomorphism F : M × TD → M × TD

defined by
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F(x, v) = (f (x),Av + h(x))

such that:

(1) F is strongly partially hyperbolic;
(2) A is a linear Anosov diffeomorphism with eigenvalues λ < 1 and λ−1 > 1, each of multiplicity d = dimM;
(3) f (x) = f0(x) and h(x) = 0 for all x ∈ M \ U ;
(4) if x ∈ NW(f ) \ X and v ∈ TD , then

Es
F (x, v) = 0 ⊕ Es

A(v), Ec
F (x, v) = TxM ⊕ 0, and Eu

F (x, v) = 0 ⊕ Eu
A(v);

(5) if x ∈ X is a sink and v ∈ TD , then

Ec
F (x, v) = 0 ⊕ Es

A(v) and Eu
F (x, v) = 0 ⊕ Eu

A(v);
(6) if x ∈ X is a source and v ∈ TD , then

Es
F (x, v) = 0 ⊕ Es

A(v) Ec
F (x, v) = 0 ⊕ Eu

A(v).

Note that the notation and, in particular, the functions f , g, and h play very different roles here than in previous 
sections.

The basic idea of the construction is to replace the possibly non-linear behavior of f0 in a neighborhood of a point 
x ∈ X with a simple linear contraction or expansion. Then, both f and A are linear maps and there are exactly three 
rates of contraction or expansion given by f and the stable and unstable directions of A. This allows us to restrict our 
consideration to the case of a linear map

F(w,x, y) = (λ−1w,bx,λy)

defined on Rd × Rd × Rd and where 0 < λ < b < 1. We deform this map so that a d-dimensional subspace which lies 
roughly in the direction of 0 × Rd × 0 converges to the subspace 0 × 0 × Rd under application of the derivative DFn

as n → +∞. This provides the effect of pushing the center direction into the stable direction of A.
The first step is to establish the following.

Lemma 5.2. For 0 < λ < b < 1 and C > 1, there is a diffeomorphism f of Rd and a smooth map h : Rd → Rd such 
that the diffeomorphism F of Rd × Rd defined by

F(x, y) = (f (x), λy + h(x))

has the following properties. If p = (x, y) ∈ Rd × Rd with b ≤ ‖x‖ ≤ 1, then

(1) f (x) = bx and h(x) = 0; and
(2) if V ⊂ Rd ×Rd is the graph of a linear map L : Rd → Rd with ‖L‖ < C, then DFn

p (V ) tends to 0 ×Rd as n tends 
to +∞.

As an aid in proving Lemma 5.2, we first introduce a notion of the “quality” of a square matrix. This is closely 
related to the idea of a row diagonally dominated matrix, however we use different wording here in order to avoid 
potential confusion between different notions of domination.

Let A be a d × d matrix with entries aij . Define the quality of the matrix as

q(A) := min{aii : 1 ≤ i ≤ d}∑{|aij | : 1 ≤ i, j ≤ d, i �= j} .

To have positive quality, a matrix must have positive diagonal entries. We allow q(A) = +∞ which occurs if and only 
if A is diagonal and positive definite.

Lemma 5.3. If q(A) > 2, then A is invertible and the operator norm of the inverse satisfies
∥∥∥A−1

∥∥∥ ≤ max

{
2d

aii

: 1 ≤ i ≤ d

}
.
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Proof. This is a variation on the Gershgorin circle theorem. Suppose v ∈ Rd is non-zero and let i be an index such 
that |vi | ≥ |vj | for all j . Then,∣∣∣∣∣∣

d∑
j=1

aij vj

∣∣∣∣∣∣ ≥
⎛
⎝aii −

∑
j �=i

|aij |
⎞
⎠ |vi | ≥ 1

2aii |vi |

which implies that ‖Av‖ ≥ 1
2d

aii‖v‖. �
Lemma 5.4. If A is a d × d matrix with q(A) > 0 and B is a positive definite diagonal matrix with entries bij , then

q(AB) ≥ q(A) min

{
bii

bjj

: 1 ≤ i, j ≤ d

}
.

Proof. Multiply A and B and check. �
Proof of Lemma 5.2. We prove Lemma 5.2 in the specific case where

b − λ

b − 1
< λ.

Showing that the general case of λ < b < 1 may be proved from this special case is left to the reader. With this 
assumption added, there is a constant 0 < a < λ such that

b − a

b − 1
< a.

Define a function g0 : [0, ∞) → [a, b] such that

(1) g0(t) = a for t ≤ b,
(2) g0(t) = b for t ≥ 1, and
(3) 0 ≤ tg′

0(t) < a for all t ≥ 0.

Define a smooth bump function ρ : [0, ∞) → [0, 1] with ρ(t) = 0 for t ≥ b, and ρ(t) = 1 for t ≤ b2. Define h : Rd →
Rd by h(x) = ρ(‖x‖)x.

Before defining f , we first consider the behavior of F̂ (x, y) := (bx, λy + h(x)) under iteration. Let p = (x, y), 
V , and L be as in item (2) of the statement of the lemma being proved. In particular, b ≤ ‖x‖ ≤ 1. For n ≥ 0, define 
V̂n := DF̂n

p (V ) and let L̂n : Rd → Rd be the linear map such that graph(L̂n) = V̂n. The definition of F̂ implies that

L̂n+1 = λ
b
L̂n + 1

b
Dh

where the derivative Dh is evaluated at bnx. If n > 2, then Dh is the identity map, I , and

L̂n+1 = λ
b
L̂n + 1

b
I.

It follows that L̂n converges exponentially fast to (b − λ)−1I . When viewed as a matrix, (b − λ)−1I is diagonal and 
positive definite and so its “quality,” as defined above, is q((b − λ)−1I ) = +∞. Therefore, there is N > 2 such that 
q(L̂n) > 4 for all n ≥ N . By compactness, one may find a uniform value of N such that this lower bound on q(L̂n)

holds for any starting p = (x, y), V , and L with ‖L‖ < C.
With N now fixed, define g : [0, ∞) → [a, b] by g(t) := g0(b

−Nt) and observe that

(1) g(t) = a for t ≤ bN+1,
(2) g(t) = b for t ≥ bN , and
(3) 0 ≤ tg′(t) < a for all t ≥ 0.

Define f by f (x) = g(‖x‖)x. With f and h now defined, we show that F(x, y) = (f (x), λy + h(x)) satisfies the 
conclusions of the lemma.
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This definition of F has a form of radial symmetry: if R is a rigid rotation about the origin in Rd , then f ◦R = R◦f , 
h ◦ R = R ◦ h, and F ◦ (R × R) = (R × R) ◦ F . Further, any one-dimensional subspace in Rd is invariant under f . 
Because of this symmetry, when analyzing orbits of F , we need only consider points of the form p = (x, y) where 
x ∈ R × 0. That is, if x is written in coordinates as x = (x1, x2, . . . , xd), then x2 = x3 = · · · = xd = 0.

The partial derivatives of f : Rd → Rd are given by

∂fi

∂xj

= g(‖x‖)δij + xixj

‖x‖ g′(‖x‖).

Since we are assuming x ∈ R × 0, the terms xixj all evaluate to 0 except for the term x1x1. Therefore

∂f1

∂x1
= g(‖x‖) + ‖x‖g′(‖x‖)

∂fi

∂xi

= g(‖x‖) if i > 1, and

∂fi

∂xj

= 0 if i �= j.

Further g′(‖x‖) is non-zero only when bN+1 < ‖x‖ < bN and one may show that

g(‖x‖) ≤ g(‖x‖) + ‖x‖g′(‖x‖) ≤ 2g(‖x‖).
In other words, the Jacobian of f is a diagonal matrix where no entry is more than twice as large as any other.

Let p = (x, y) with x ∈ R × 0 and b ≤ ‖x‖ ≤ 1. Let V and L be as in item (2) of the statement of the lemma. 
For n ≥ 0, define Vn := DFn

p (V ) and Ln : Rd → Rd such that graph(Ln) = Vn. We now analyze Ln as n tends to 

+∞. First, if n < N , then ‖f n(x)‖ ≥ bN and the functions Fn and F̂ n are equal in a neighborhood of p. Therefore 
LN = L̂N and in particular q(LN) > 4.

For the case n = N , the equality graph(LN+1) = DF(graph(LN)) may be written as{
(u,LN+1(u)) : u ∈ Rd

} = {
(Df (v), λLN(v) + v) : v ∈ Rd

}
showing that LN+1 = (λLN + I ) ◦ Df −1 where Df is evaluated at f N(x). Lemma 5.4, along with the above remark 
about the Jacobian of f , shows that

q
(
(λLN + I ) ◦ Df −1) ≥ 1

2q
(
λLN + I

)
and this implies that q(LN+1) ≥ 1

2q(LN) > 2.
Finally, for n > N , the point f n(x) satisfies ‖f n(x)‖ ≤ bN+1. For points in this region, Df = aI and so LN+1 =

λ
a
Ln + 1

a
I which implies that q(Ln+1) > q(Ln) > 2 for all large n. Since λ

a
> 1, the linear map Ln when viewed as 

a matrix has positive entries on its diagonal and these entries tend to +∞ as n tends to +∞. Lemma 5.3 implies that 
‖L−1

n ‖ tends to zero as n → +∞ and therefore the sequence of subspaces Vn tends to 0 × Rd . �
The next result simply adds an expanding direction to Lemma 5.2.

Corollary 5.5. For 0 < λ < b < 1 and C > 1, there is a diffeomorphism f of Rd and a smooth map h : Rd → Rd such 
that the diffeomorphism F of Rd × Rd × Rd defined by

F(w,x, y) = (λ−1w,f (x), λy + h(x))

has the following properties. If p = (w, x, y) ∈ Rd × Rd × Rd with b ≤ ‖x‖ ≤ 1, then

(1) f (x) = bx and h(x) = 0;
(2) if V ⊂ Rd × Rd × Rd is the graph of a linear map L : Rd → Rd × Rd with ‖L‖ < C, then DFn

p (V ) tends to 
Rd × 0 × 0 as n tends to +∞; and

(3) if V ⊂ Rd × Rd × Rd is the graph of a linear map L : Rd × Rd → Rd with ‖L‖ < C, then DFn
p (V ) tends to 

Rd × 0 × Rd as n tends to +∞.
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Proof. Use the same f and h as in Lemma 5.2. �
With this established, we now consider diffeomorphisms defined on closed manifolds. For a closed manifold M

and a hyperbolic toral automorphism A : TD → TD , an A-map is a map F : M × TD → M × TD of the form

F(x, v) = (f (x),Av + h(x)).

See [9] for a more general definition and further details. If F is also a (strongly) partially hyperbolic diffeomorphism, 
we call it a partially hyperbolic A-map. Note that we do not a priori assume that the partially hyperbolic splitting has 
any relation to the fibers of the torus bundle.

There is a small subtlety in proving Proposition 5.1 in the case where the basin of a sink overlaps the basin of a 
source. To handle this, we will prove Proposition 5.1 by induction and keep track of a property we call being “graph 
like” for the splitting at a point.

For a partially hyperbolic A-map and a point x ∈ M , the subbundle Eu is graph like at x if, for all v ∈ TD , Eu(x, v)

is the graph of a linear function from Eu
A(v) to Es

A(v) ⊕ TxM . Similarly, Ecu, Ecs , and Es are graph like at x if they 
are graphs of linear functions

TxM ⊕ Eu
A(v) → Es

A(v), TxM ⊕ Es
A(v) → Eu

A(v), and Es
A(v) → Eu

A(v) ⊕ TxM

respectively. If all of Eu, Ecs , Ecu, and Es are graph like at x, we say the splitting is graph like at x.
Since the bundles in the splitting are continuous and DF -invariant the following is easily verified.

Lemma 5.6. Let F be a partially hyperbolic A-map with base map f : M → M . For a bundle E ∈ {Eu, Ecu, Ecs, Es}, 
the set of graph-like points is open and f -invariant.

Next, we consider a normally attracting fiber.

Lemma 5.7. For a partially hyperbolic A-map F with base map f : M → M , if x ∈ M is a periodic sink for f and 
x × TD is tangent to Ecu, then Es and Ecs are graph like for every point in the basin of x.

Proof. Since Es
F is transverse to x ×TD , it is graph like at x. By the uniqueness of the dominated splitting on x ×TD , 

Ec
F (x, v) = Es

A(v) for all v ∈ TD . Therefore, Ecs
F is also graph like at x. By the previous lemma, being graph like at 

x extends to being graph like on the basin of x. �
The next lemma allows us to replace non-linear sinks with linear ones.

Lemma 5.8. Let f0 : M → M be a diffeomorphism with a periodic sink x0 = f k
0 (x0) and let ε > 0 and 0 < b < 1. 

Then there is a diffeomorphism f : M → M and a coordinate chart ϕ : [−1, 1]d → M such that

(1) if dist (x, x0) > ε, then f (x) = f0(x),
(2) f and f0 have the same non-wandering set,
(3) ϕ(0) = x0, and
(4) ϕ−1 ◦ f k ◦ ϕ(y) = by for all y ∈ [−1, 1]d .

Proof. This follows from standard methods of pasting diffeomorphisms [19]. First, one may make a C1 small pertur-
bation in order to assume that ϕ−1 ◦ f k ◦ ϕ is linear in a neighborhood of 0. Then, deform the linear map inside that 
neighborhood to get the desired homothety. �

Now we state what will be the inductive step in proving Proposition 5.1.

Proposition 5.9. Let A be a hyperbolic toral automorphism of TD with eigenvalues λ < 1 and λ−1 > 1, each of 
multiplicity d = 1

2D. Suppose F0 is a partially hyperbolic A-map having a base map f0 : M → M with dimM = d

and x0 is a periodic sink such that the splitting is graph like at x0. For any ε > 0, there is a partially hyperbolic A-map 
F such that



A. Hammerlindl / Ann. I. H. Poincaré – AN 35 (2018) 713–728 727
(1) if dist (x, x0) > ε, then F(x, v) = F0(x, v) for all v ∈ TD;
(2) if the splitting for F0 is graph like at a point x outside the orbit of x0, then the splitting for F is also graph like 

at x; and
(3) x0 × TD is an F -periodic submanifold tangent to Ecu

F .

Proof. This proof breaks into two steps. First, we deform F0 to produce a partially hyperbolic map F1 which is linear 
in a neighborhood of x0 × TD , but which still has a graph-like splitting at x0. Then, we paste in the dynamics given 
by Corollary 5.5, to produce a partially hyperbolic map F for which Ecu

F is tangent to x0 × TD .
Let U be a neighborhood of the orbit of x0 such that U is contained in the basin of attraction and f0(U) ⊂ U . 

Define a smooth function h1 : M → TD such that h1(x) = h0(x) for all x ∈ M \ U and h1(x) = 0 for all x ∈ f (U).
Fix b such that λ < b < 1 where λ is the stable eigenvalue of A. Let k denote the period of x0. By Lemma 5.8, there 

is a coordinate chart ϕ : [−1, 1]d → M and a diffeomorphism f1 : M → M such that ϕ−1 ◦f k
1 ◦ϕ(x) = bx for all x ∈

[−1, 1]d . Moreover, we may freely assume that ϕ([−1, 1]d) ⊂ f0(U) and that f1(x) = f0(x) for all x ∈ M \ f0(U). 
By abuse of notation, we identify [−1, 1]d with its image and regard [−1, 1]d as a subset of M .

Define a diffeomorphism F1 of M × TD by F1(x, v) = (f1(x, v), Av + h1(x)). If x ∈ U \ f1(U) and v ∈ TD , 
define Eu

F1
(x, v) := Eu

F0
(x, v). Using Proposition 2.1, one may then establish the existence of a dominated splitting 

Eu
F1

⊕ Ecs
F1

on all of M × TD . Similarly, If x ∈ U \ f1(U) and v ∈ TD , define Ecu
F1

(x, v) := Ecu
F0

(x, v) and apply the 
same reasoning to establish a dominated splitting of the form Ecu

F1
⊕ Es

F1
on all of M × TD . From this, one may show 

that F1 is partially hyperbolic and that the splitting of F1 is graph like at a point x if and only if the original F0 was 
graph like at x.

Since Eu
F1

is continuous and graph like on U , there is a uniform constant C > 1 such that if x ∈ [−1, 1]d ⊂ M

with b ≤ ‖x‖ ≤ 1 and v ∈ TD then Eu
F1

(x, v) is the graph of a linear function L : Eu
A(x, v) → TxM ⊕ Es

A(x, v) with 
‖L‖ < C. A similar bound also holds when Ecu

F1
(x, v) is expressed as the graph of a linear function. By Corollary 5.5, 

there are functions f : M → M and h : M → TD such that F defined by F(x, v) = (f (x), Av + h(x)) satisfies the 
following properties.

(1) If either x ∈ M \ [−1, 1]d or x ∈ [−1, 1]d with ‖x‖ > 1, then f (x) = f1(x) and h(x) = h1(x).
(2) If x ∈ [−1, 1]d with b ≤ ‖x‖ ≤ 1, then f (x) = bx. Further, if {nj } ⊂ N is such that Fnj (x, v) converges to a 

point (x0, v0) in x0 × TD , then DFnj (Eu
F1

(x, v)) converges to 0 × Eu
A(v0) and DFnj (Ecu

F1
(x, v)) converges to 

0 × Tv0T
D .

Then the results in section 2 show that F is partially hyperbolic with x0 × TD tangent to Ecu
F . �

One can ask if the new map F created in Proposition 5.9 is dynamically coherent. That is, even though the center 
bundle is not uniquely integrable, is there an invariant foliation tangent to the bundle? In the special case that the base 
manifold M = S1 is one-dimensional, the h(x) term in the construction shears the dynamics in opposite directions on 
the two sides of the sink. The resulting map F on S1 × T2 = T3 therefore corresponds to the dynamically coherent 
example appearing in subsection 2.3 of [17]. Based on this, the author suspects that the map F in Proposition 5.9 will 
be dynamically coherent exactly when the original map F0 was dynamically coherent. This question, however, is left 
as a topic for future research.

With Proposition 5.9 established, Proposition 5.1 easily follows.

Proof of Proposition 5.1. Given f0, define a hyperbolic toral automorphism A : TD → TD such that F0 := f0 × A

is partially hyperbolic. For instance, A can be the direct product of d copies of a high iterate of the cat map. Clearly, 
F0 is a partially hyperbolic A-map and the splitting is graph like at all points. Let x0 be any point in X and apply 
Proposition 5.9 to F0 and x0 to produce a map F1 where x0 × TD is tangent either to Ecs and Ecu. If X contains a 
point x1 which is not in the orbit of x0, then apply Proposition 5.9 to F1 and x1 to produce a map F2. After a finite 
number of steps of this form, the desired map F in Proposition 5.1 is constructed. �
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