This article is devoted to the Cauchy problem for the 2D gravity-capillary water waves in fluid domains with general bottoms. Local well-posedness for this problem with Lipschitz initial velocity was established by Alazard–Burq–Zuily [1]. We prove that the Cauchy problem in Sobolev spaces is uniquely solvable for initial data -derivative less regular than the aforementioned threshold, which corresponds to the gain of Hölder regularity of the semi-classical Strichartz estimate for the fully nonlinear system. In order to obtain this Cauchy theory, we establish global, quantitative results for the paracomposition theory of Alinhac [5].
@article{AIHPC_2017__34_7_1793_0, author = {Nguyen, Huy Quang}, title = {A sharp {Cauchy} theory for the {2D} gravity-capillary waves}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1793--1836}, publisher = {Elsevier}, volume = {34}, number = {7}, year = {2017}, doi = {10.1016/j.anihpc.2016.12.007}, zbl = {1451.76028}, mrnumber = {3724757}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.007/} }
TY - JOUR AU - Nguyen, Huy Quang TI - A sharp Cauchy theory for the 2D gravity-capillary waves JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1793 EP - 1836 VL - 34 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.007/ DO - 10.1016/j.anihpc.2016.12.007 LA - en ID - AIHPC_2017__34_7_1793_0 ER -
%0 Journal Article %A Nguyen, Huy Quang %T A sharp Cauchy theory for the 2D gravity-capillary waves %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1793-1836 %V 34 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.007/ %R 10.1016/j.anihpc.2016.12.007 %G en %F AIHPC_2017__34_7_1793_0
Nguyen, Huy Quang. A sharp Cauchy theory for the 2D gravity-capillary waves. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1793-1836. doi : 10.1016/j.anihpc.2016.12.007. http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.007/
[1] On the water waves equations with surface tension, Duke Math. J., Volume 158 (2011) no. 3, pp. 413–499 | MR | Zbl
[2] Strichartz estimates for water waves, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011) no. 5, pp. 855–903 | Numdam | MR | Zbl
[3] On the Cauchy problem for gravity water waves, Invent. Math., Volume 198 (2014) no. 1, pp. 71–163 | MR | Zbl
[4] Strichartz estimate and the Cauchy problem for the gravity water waves equations, 2014 | arXiv
[5] Paracomposition et opérateurs paradifférentiels, Commun. Partial Differ. Equ., Volume 11 (1986) no. 1, pp. 87–121 | MR | Zbl
[6] Équations d'ondes quasilinéaires et estimations de Strichartz, Am. J. Math., Volume 121 (1999) no. 6, pp. 1337–1377 | MR | Zbl
[7] Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren Math. Wiss., Fundamental Principles of Mathematical Sciences, vol. 343, Springer, Heidelberg, 2011 | DOI | MR | Zbl
[8] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Supér. (4), Volume 14 (1981) no. 2, pp. 209–246 | Numdam | MR | Zbl
[9] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Am. J. Math., Volume 126 (2004) no. 3, pp. 569–605 | MR | Zbl
[10] Strichartz estimates for the water-wave problem with surface tension, Commun. Partial Differ. Equ., Volume 35 (2010) no. 12, pp. 2195–2252 | MR | Zbl
[11] On the motion of the free surface of a liquid, Commun. Pure Appl. Math., Volume 53 (2000) no. 12, pp. 1536–1602 | MR | Zbl
[12] Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Am. Math. Soc., Volume 20 (2007) no. 3, pp. 829–930 (electronic) | MR | Zbl
[13] An existence theory for water waves and the Boussinesq and Korteweg–deVries scaling limits, Commun. Partial Differ. Equ., Volume 10 (1985) no. 8, pp. 787–1003 | MR | Zbl
[14] Numerical simulation of gravity waves, J. Comput. Phys., Volume 108 (1993) no. 1, pp. 73–83 | MR | Zbl
[15] A paradifferential reduction for the gravity-capillary waves system at low regularity and applications, Bull. Soc. Math. Fr. (2017) (in press) | arXiv | MR | Zbl
[16] Strichartz estimates and local existence for the capillary water waves with non-Lipschitz initial velocity, J. Differ. Equ., Volume 261 (2016) no. 1, pp. 396–438 | MR | Zbl
[17] Microlocal Analysis for Pseudo-Differential Operators, Lond. Math. Soc. Lect. Note Ser., 1994 | MR | Zbl
[18] Sharp Strichartz estimates for water waves systems | arXiv | Zbl
[19] Well-posedness of the water-waves equations, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 605–654 (electronic) | MR | Zbl
[20] Water Waves: Mathematical Analysis and Asymptotics, Math. Surv. Monogr., vol. 188, American Mathematical Society, Providence, RI, 2013 | DOI | MR | Zbl
[21] Singularités des solutions d'équations d'ondes semi-linéaires, Ann. Sci. Éc. Norm. Supér., Volume 25 (1992) no. 2, pp. 201–231 | Numdam | MR | Zbl
[22] Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. Math. (2), Volume 162 (2005) no. 1, pp. 109–194 | MR | Zbl
[23] Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems, Cent. Ric. Mat. Ennio Giorgi, vol. 5, Edizioni della Normale, Pisa, 2008 | MR | Zbl
[24] Well-posedness of the water-wave problem with surface tension, J. Math. Pures Appl. (9), Volume 92 (2009) no. 5, pp. 429–455 | MR | Zbl
[25] The Cauchy–Poisson problem, Dinamika Zidkost. so Svobod. Granicami, Din. Sploš. Sredy, vol. 18, 1974, pp. 104–210 (254) | MR
[26] Geometry and a priori estimates for free boundary problems of the Euler equation, Commun. Pure Appl. Math., Volume 61 (2008) no. 5, pp. 698–744 | MR | Zbl
[27] A priori estimates for fluid interface problems, Commun. Pure Appl. Math., Volume 61 (2008) no. 6, pp. 848–876 | MR | Zbl
[28] Local well-posedness for fluid interface problems, Arch. Ration. Mech. Anal., Volume 199 (2011) no. 2, pp. 653–705 | MR | Zbl
[29] Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Am. J. Math., Volume 122 (2000) no. 2, pp. 349–376 | MR | Zbl
[30] Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II, Am. J. Math., Volume 123 (2001) no. 3, pp. 385–423 | MR | Zbl
[31] Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math., Volume 130 (1997) no. 1, pp. 39–72 | MR | Zbl
[32] Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Am. Math. Soc., Volume 12 (1999) no. 2, pp. 445–495 | MR | Zbl
[33] Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci., Volume 18 (1982) no. 1, pp. 49–96 | MR | Zbl
Cité par Sources :