Fujita blow up phenomena and hair trigger effect: The role of dispersal tails
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1309-1327.

We consider the nonlocal diffusion equation tu=Juu+u1+p in the whole of RN. We prove that the Fujita exponent dramatically depends on the behavior of the Fourier transform of the kernel J near the origin, which is linked to the tails of J. In particular, for compactly supported or exponentially bounded kernels, the Fujita exponent is the same as that of the nonlinear Heat equation tu=Δu+u1+p. On the other hand, for kernels with algebraic tails, the Fujita exponent is either of the Heat type or of some related Fractional type, depending on the finiteness of the second moment of J. As an application of the result in population dynamics models, we discuss the hair trigger effect for tu=Juu+u1+p(1u).

DOI : 10.1016/j.anihpc.2016.10.005
Classification : 35B40, 35B33, 45K05, 47G20
Mots-clés : Blow up solution, Global solution, Fujita exponent, Nonlocal diffusion, Dispersal tails, Hair trigger effect
@article{AIHPC_2017__34_5_1309_0,
     author = {Alfaro, Matthieu},
     title = {Fujita blow up phenomena and hair trigger effect: {The} role of dispersal tails},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1309--1327},
     publisher = {Elsevier},
     volume = {34},
     number = {5},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.10.005},
     mrnumber = {3742526},
     zbl = {1379.35037},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2016.10.005/}
}
TY  - JOUR
AU  - Alfaro, Matthieu
TI  - Fujita blow up phenomena and hair trigger effect: The role of dispersal tails
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1309
EP  - 1327
VL  - 34
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2016.10.005/
DO  - 10.1016/j.anihpc.2016.10.005
LA  - en
ID  - AIHPC_2017__34_5_1309_0
ER  - 
%0 Journal Article
%A Alfaro, Matthieu
%T Fujita blow up phenomena and hair trigger effect: The role of dispersal tails
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1309-1327
%V 34
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2016.10.005/
%R 10.1016/j.anihpc.2016.10.005
%G en
%F AIHPC_2017__34_5_1309_0
Alfaro, Matthieu. Fujita blow up phenomena and hair trigger effect: The role of dispersal tails. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1309-1327. doi : 10.1016/j.anihpc.2016.10.005. https://www.numdam.org/articles/10.1016/j.anihpc.2016.10.005/

[1] Alfaro, M. Slowing Allee effect vs. accelerating heavy tails in monostable reaction diffusion equations (submitted for publication) | arXiv | MR | Zbl

[2] M. Alfaro, J. Coville, Propagation phenomena in monostable integro-differential equations: acceleration or not?, submitted for publication. | MR

[3] Aronson, D.G.; Weinberger, H.F. Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., Volume 30 (1978), pp. 33–76 | DOI | MR | Zbl

[4] Bebernes, J.W.; Li, C.; Li, Y. Travelling fronts in cylinders and their stability, Rocky Mt. J. Math., Volume 27 (1997), pp. 123–150 | DOI | MR | Zbl

[5] Birkner, M.; López-Mimbela, J.A.; Wakolbinger, A. Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach, Proc. Am. Math. Soc., Volume 130 (2002), pp. 2431–2442 (electronic) | DOI | MR | Zbl

[6] Chasseigne, E.; Chaves, M.; Rossi, J.D. Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl. (9), Volume 86 (2006), pp. 271–291 | DOI | MR | Zbl

[7] Deng, K.; Levine, H.A. The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl., Volume 243 (2000), pp. 85–126 | DOI | MR | Zbl

[8] Durrett, R. Probability: Theory and Examples, Duxbury Press, Belmont, CA, 1996 | MR

[9] Fisher, R.A. The wave of advance of advantageous genes, Annu. Eugen., Volume 7 (1937), pp. 355–369 | JFM

[10] Fujita, H. On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α , J. Fac. Sci., Univ. Tokyo, Sect. I, Volume 13 (1966), pp. 109–124 | MR | Zbl

[11] García-Melián, J.; Quirós, F. Fujita exponents for evolution problems with nonlocal diffusion, J. Evol. Equ., Volume 10 (2010), pp. 147–161 | DOI | MR | Zbl

[12] García-Melián, J.; Rossi, J.D. On the principal eigenvalue of some nonlocal diffusion problems, J. Differ. Equ., Volume 246 (2009), pp. 21–38 | DOI | MR | Zbl

[13] Guedda, M.; Kirane, M. A note on nonexistence of global solutions to a nonlinear integral equation, Bull. Belg. Math. Soc. Simon Stevin, Volume 6 (1999), pp. 491–497 | DOI | MR | Zbl

[14] Gui, C.; Huan, T. Traveling wave solutions to some reaction diffusion equations with fractional Laplacians, Calc. Var. Partial Differ. Equ., Volume 54 (2015), pp. 251–273 | MR | Zbl

[15] Hayakawa, K. On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Jpn. Acad., Volume 49 (1973), pp. 503–505 | MR | Zbl

[16] Kaplan, S. On the growth of solutions of quasi-linear parabolic equations, Commun. Pure Appl. Math., Volume 16 (1963), pp. 305–330 | DOI | MR | Zbl

[17] Kobayashi, K.; Sirao, T.; Tanaka, H. On the growing up problem for semilinear heat equations, J. Math. Soc. Jpn., Volume 29 (1977), pp. 407–424 | DOI | MR | Zbl

[18] Kolmogorov, A.N.; Petrovsky, I.G.; Piskunov, N.S. Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Etat Moscou, Sér. Inter. A, Volume 1 (1937), pp. 1–26 | Zbl

[19] Levine, H.A. The role of critical exponents in blowup theorems, SIAM Rev., Volume 32 (1990), pp. 262–288 | DOI | MR | Zbl

[20] Mellet, A.; Roquejoffre, J.-M.; Sire, Y. Existence and asymptotics of fronts in non local combustion models, Commun. Math. Sci., Volume 12 (2014), pp. 1–11 | DOI | MR | Zbl

[21] Mitidieri, È.; Pokhozhaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova, Volume 234 (2001), pp. 1–384 | MR | Zbl

[22] Quittner, P.; Souplet, P. Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Adv. Texts. Basl. Lehrb., Birkhäuser Verlag, Basel, 2007 | MR | Zbl

[23] Sugitani, S. On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math., Volume 12 (1975), pp. 45–51 | MR | Zbl

[24] Weissler, F.B. Existence and nonexistence of global solutions for a semilinear heat equation, Isr. J. Math., Volume 38 (1981), pp. 29–40 | DOI | MR | Zbl

[25] Xin, J. Existence and nonexistence of traveling waves and reaction–diffusion front propagation in periodic media, J. Stat. Phys., Volume 73 (1993), pp. 893–926 | MR | Zbl

[26] Yang, J.; Zhou, S.; Zheng, S. Asymptotic behavior of the nonlocal diffusion equation with localized source, Proc. Am. Math. Soc., Volume 142 (2014), pp. 3521–3532 | DOI | MR | Zbl

[27] Zhang, G.-B.; Li, W.-T.; Wang, Z.-C. Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differ. Equ., Volume 252 (2012), pp. 5096–5124 | MR | Zbl

[28] Zlatoš, A. Quenching and propagation of combustion without ignition temperature cutoff, Nonlinearity, Volume 18 (2005), pp. 1463–1475 | DOI | MR | Zbl

  • Del Pezzo, Leandro M.; Ferreira, Raúl Fujita exponent and blow-up rate for a mixed local and nonlocal heat equation, Nonlinear Analysis, Volume 255 (2025), p. 113761 | DOI:10.1016/j.na.2025.113761
  • Ducrot, Arnaud; Kang, Hao Travelling wave solutions and spreading speeds for a scalar age-structured equation with nonlocal diffusion, European Journal of Applied Mathematics (2024), p. 1 | DOI:10.1017/s0956792524000731
  • Ge, Shuxin; Yuan, Rong; Zhang, Xiaofeng Global existence, blow-up and dynamical behavior in a nonlocal parabolic problem with variational structure, Nonlinear Analysis: Real World Applications, Volume 76 (2024), p. 104007 | DOI:10.1016/j.nonrwa.2023.104007
  • Bo, Wei-Jian; Lin, Guo Wave speeds in delayed diffusion equations with ignition and degenerate nonlinearities, Nonlinear Analysis: Real World Applications, Volume 77 (2024), p. 104064 | DOI:10.1016/j.nonrwa.2024.104064
  • Rao, Sanping; Yang, Chunxiao; Yang, Jinge On positive solutions of the Cauchy problem for doubly nonlocal equations, Quaestiones Mathematicae, Volume 47 (2024) no. 11, p. 2295 | DOI:10.2989/16073606.2024.2364302
  • Tréton, Samuel Blow-Up vs. Global Existence for a Fujita-Type Heat Exchanger System, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 2, p. 2191 | DOI:10.1137/23m1587440
  • Alfaro, Matthieu; Ducasse, Romain; Tréton, Samuel The field-road diffusion model: Fundamental solution and asymptotic behavior, Journal of Differential Equations, Volume 367 (2023), p. 332 | DOI:10.1016/j.jde.2023.05.002
  • Ducrot, Arnaud; Jin, Zhucheng Spreading Properties for Non-autonomous Fisher–KPP Equations with Non-local Diffusion, Journal of Nonlinear Science, Volume 33 (2023) no. 6 | DOI:10.1007/s00332-023-09954-6
  • Alfaro, Matthieu; Ducrot, Arnaud; Kang, Hao Quantifying the Threshold Phenomenon for Propagation in Nonlocal Diffusion Equations, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 3, p. 1596 | DOI:10.1137/22m1479099
  • Alfaro, Matthieu; Kavian, Otared Blow-up phenomena for positive solutions of semilinear diffusion equations in a half-space: the influence of the dispersion kernel, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 31 (2022) no. 5, p. 1259 | DOI:10.5802/afst.1718
  • Mi, Shao-Yue; Han, Bang-Sheng; Yang, Yinghui Spatial dynamics of a nonlocal predator–prey model with double mutation, International Journal of Biomathematics, Volume 15 (2022) no. 06 | DOI:10.1142/s1793524522500358
  • Bo, Wei-Jian; Lin, Guo; Qi, Yuanwei The Role of Delay and Degeneracy on Propagation Dynamics in Diffusion Equations, Journal of Dynamics and Differential Equations, Volume 34 (2022) no. 3, p. 2371 | DOI:10.1007/s10884-021-10030-4
  • Khomrutai, Sujin; Manui, Auttawich; Schikorra, Armin Non-blowup at critical exponent for a semilinear nonlocal diffusion equation, Applied Mathematics Letters, Volume 116 (2021), p. 107063 | DOI:10.1016/j.aml.2021.107063
  • Xu, Wen-Bing; Li, Wan-Tong; Ruan, Shigui Spatial propagation in nonlocal dispersal Fisher-KPP equations, Journal of Functional Analysis, Volume 280 (2021) no. 10, p. 108957 | DOI:10.1016/j.jfa.2021.108957
  • Ei, Shin-Ichiro; Guo, Jong-Shenq; Ishii, Hiroshi; Wu, Chin-Chin Existence of traveling wave solutions to a nonlocal scalar equation with sign-changing kernel, Journal of Mathematical Analysis and Applications, Volume 487 (2020) no. 2, p. 124007 | DOI:10.1016/j.jmaa.2020.124007
  • Pan, Yingli; Su, Ying; Wei, Junjie Accelerating propagation in a recursive system arising from seasonal population models with nonlocal dispersal, Journal of Differential Equations, Volume 267 (2019) no. 1, p. 150 | DOI:10.1016/j.jde.2019.01.009
  • Khomrutai, Sujin Nonlocal equations with regular varying decay solutions, Journal of Differential Equations, Volume 267 (2019) no. 8, p. 4807 | DOI:10.1016/j.jde.2019.05.018
  • Biler, Piotr Blowup of solutions for nonlinear nonlocal heat equations, Monatshefte für Mathematik, Volume 189 (2019) no. 4, p. 611 | DOI:10.1007/s00605-019-01269-7
  • Khomrutai, Sujin Weighted Lp estimates and Fujita exponent for a nonlocal equation, Nonlinear Analysis, Volume 184 (2019), p. 321 | DOI:10.1016/j.na.2019.02.027
  • Biler, Piotr; Pilarczyk, Dominika Around a singular solution of a nonlocal nonlinear heat equation, Nonlinear Differential Equations and Applications NoDEA, Volume 26 (2019) no. 1 | DOI:10.1007/s00030-019-0552-z
  • Ducrot, Arnaud; Guo, Jong-Shenq; Lin, Guo; Pan, Shuxia The spreading speed and the minimal wave speed of a predator–prey system with nonlocal dispersal, Zeitschrift für angewandte Mathematik und Physik, Volume 70 (2019) no. 5 | DOI:10.1007/s00033-019-1188-x
  • Yang, Jinge Second critical exponent for a nonlinear nonlocal diffusion equation, Applied Mathematics Letters, Volume 81 (2018), p. 57 | DOI:10.1016/j.aml.2018.02.002
  • Finkelshtein, Dmitri; Tkachov, Pasha The hair-trigger effect for a class of nonlocal nonlinear equations, Nonlinearity, Volume 31 (2018) no. 6, p. 2442 | DOI:10.1088/1361-6544/aab1cb

Cité par 23 documents. Sources : Crossref