We consider the nonlocal diffusion equation
Mots-clés : Blow up solution, Global solution, Fujita exponent, Nonlocal diffusion, Dispersal tails, Hair trigger effect
@article{AIHPC_2017__34_5_1309_0, author = {Alfaro, Matthieu}, title = {Fujita blow up phenomena and hair trigger effect: {The} role of dispersal tails}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1309--1327}, publisher = {Elsevier}, volume = {34}, number = {5}, year = {2017}, doi = {10.1016/j.anihpc.2016.10.005}, mrnumber = {3742526}, zbl = {1379.35037}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2016.10.005/} }
TY - JOUR AU - Alfaro, Matthieu TI - Fujita blow up phenomena and hair trigger effect: The role of dispersal tails JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1309 EP - 1327 VL - 34 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2016.10.005/ DO - 10.1016/j.anihpc.2016.10.005 LA - en ID - AIHPC_2017__34_5_1309_0 ER -
%0 Journal Article %A Alfaro, Matthieu %T Fujita blow up phenomena and hair trigger effect: The role of dispersal tails %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1309-1327 %V 34 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2016.10.005/ %R 10.1016/j.anihpc.2016.10.005 %G en %F AIHPC_2017__34_5_1309_0
Alfaro, Matthieu. Fujita blow up phenomena and hair trigger effect: The role of dispersal tails. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1309-1327. doi : 10.1016/j.anihpc.2016.10.005. https://www.numdam.org/articles/10.1016/j.anihpc.2016.10.005/
[1] Slowing Allee effect vs. accelerating heavy tails in monostable reaction diffusion equations (submitted for publication) | arXiv | MR | Zbl
[2] M. Alfaro, J. Coville, Propagation phenomena in monostable integro-differential equations: acceleration or not?, submitted for publication. | MR
[3] Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., Volume 30 (1978), pp. 33–76 | DOI | MR | Zbl
[4] Travelling fronts in cylinders and their stability, Rocky Mt. J. Math., Volume 27 (1997), pp. 123–150 | DOI | MR | Zbl
[5] Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach, Proc. Am. Math. Soc., Volume 130 (2002), pp. 2431–2442 (electronic) | DOI | MR | Zbl
[6] Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl. (9), Volume 86 (2006), pp. 271–291 | DOI | MR | Zbl
[7] The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl., Volume 243 (2000), pp. 85–126 | DOI | MR | Zbl
[8] Probability: Theory and Examples, Duxbury Press, Belmont, CA, 1996 | MR
[9] The wave of advance of advantageous genes, Annu. Eugen., Volume 7 (1937), pp. 355–369 | JFM
[10] On the blowing up of solutions of the Cauchy problem for
[11] Fujita exponents for evolution problems with nonlocal diffusion, J. Evol. Equ., Volume 10 (2010), pp. 147–161 | DOI | MR | Zbl
[12] On the principal eigenvalue of some nonlocal diffusion problems, J. Differ. Equ., Volume 246 (2009), pp. 21–38 | DOI | MR | Zbl
[13] A note on nonexistence of global solutions to a nonlinear integral equation, Bull. Belg. Math. Soc. Simon Stevin, Volume 6 (1999), pp. 491–497 | DOI | MR | Zbl
[14] Traveling wave solutions to some reaction diffusion equations with fractional Laplacians, Calc. Var. Partial Differ. Equ., Volume 54 (2015), pp. 251–273 | MR | Zbl
[15] On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Jpn. Acad., Volume 49 (1973), pp. 503–505 | MR | Zbl
[16] On the growth of solutions of quasi-linear parabolic equations, Commun. Pure Appl. Math., Volume 16 (1963), pp. 305–330 | DOI | MR | Zbl
[17] On the growing up problem for semilinear heat equations, J. Math. Soc. Jpn., Volume 29 (1977), pp. 407–424 | DOI | MR | Zbl
[18] Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Etat Moscou, Sér. Inter. A, Volume 1 (1937), pp. 1–26 | Zbl
[19] The role of critical exponents in blowup theorems, SIAM Rev., Volume 32 (1990), pp. 262–288 | DOI | MR | Zbl
[20] Existence and asymptotics of fronts in non local combustion models, Commun. Math. Sci., Volume 12 (2014), pp. 1–11 | DOI | MR | Zbl
[21] A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova, Volume 234 (2001), pp. 1–384 | MR | Zbl
[22] Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Adv. Texts. Basl. Lehrb., Birkhäuser Verlag, Basel, 2007 | MR | Zbl
[23] On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math., Volume 12 (1975), pp. 45–51 | MR | Zbl
[24] Existence and nonexistence of global solutions for a semilinear heat equation, Isr. J. Math., Volume 38 (1981), pp. 29–40 | DOI | MR | Zbl
[25] Existence and nonexistence of traveling waves and reaction–diffusion front propagation in periodic media, J. Stat. Phys., Volume 73 (1993), pp. 893–926 | MR | Zbl
[26] Asymptotic behavior of the nonlocal diffusion equation with localized source, Proc. Am. Math. Soc., Volume 142 (2014), pp. 3521–3532 | DOI | MR | Zbl
[27] Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differ. Equ., Volume 252 (2012), pp. 5096–5124 | MR | Zbl
[28] Quenching and propagation of combustion without ignition temperature cutoff, Nonlinearity, Volume 18 (2005), pp. 1463–1475 | DOI | MR | Zbl
- Fujita exponent and blow-up rate for a mixed local and nonlocal heat equation, Nonlinear Analysis, Volume 255 (2025), p. 113761 | DOI:10.1016/j.na.2025.113761
- Travelling wave solutions and spreading speeds for a scalar age-structured equation with nonlocal diffusion, European Journal of Applied Mathematics (2024), p. 1 | DOI:10.1017/s0956792524000731
- Global existence, blow-up and dynamical behavior in a nonlocal parabolic problem with variational structure, Nonlinear Analysis: Real World Applications, Volume 76 (2024), p. 104007 | DOI:10.1016/j.nonrwa.2023.104007
- Wave speeds in delayed diffusion equations with ignition and degenerate nonlinearities, Nonlinear Analysis: Real World Applications, Volume 77 (2024), p. 104064 | DOI:10.1016/j.nonrwa.2024.104064
- On positive solutions of the Cauchy problem for doubly nonlocal equations, Quaestiones Mathematicae, Volume 47 (2024) no. 11, p. 2295 | DOI:10.2989/16073606.2024.2364302
- Blow-Up vs. Global Existence for a Fujita-Type Heat Exchanger System, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 2, p. 2191 | DOI:10.1137/23m1587440
- The field-road diffusion model: Fundamental solution and asymptotic behavior, Journal of Differential Equations, Volume 367 (2023), p. 332 | DOI:10.1016/j.jde.2023.05.002
- Spreading Properties for Non-autonomous Fisher–KPP Equations with Non-local Diffusion, Journal of Nonlinear Science, Volume 33 (2023) no. 6 | DOI:10.1007/s00332-023-09954-6
- Quantifying the Threshold Phenomenon for Propagation in Nonlocal Diffusion Equations, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 3, p. 1596 | DOI:10.1137/22m1479099
- Blow-up phenomena for positive solutions of semilinear diffusion equations in a half-space: the influence of the dispersion kernel, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 31 (2022) no. 5, p. 1259 | DOI:10.5802/afst.1718
- Spatial dynamics of a nonlocal predator–prey model with double mutation, International Journal of Biomathematics, Volume 15 (2022) no. 06 | DOI:10.1142/s1793524522500358
- The Role of Delay and Degeneracy on Propagation Dynamics in Diffusion Equations, Journal of Dynamics and Differential Equations, Volume 34 (2022) no. 3, p. 2371 | DOI:10.1007/s10884-021-10030-4
- Non-blowup at critical exponent for a semilinear nonlocal diffusion equation, Applied Mathematics Letters, Volume 116 (2021), p. 107063 | DOI:10.1016/j.aml.2021.107063
- Spatial propagation in nonlocal dispersal Fisher-KPP equations, Journal of Functional Analysis, Volume 280 (2021) no. 10, p. 108957 | DOI:10.1016/j.jfa.2021.108957
- Existence of traveling wave solutions to a nonlocal scalar equation with sign-changing kernel, Journal of Mathematical Analysis and Applications, Volume 487 (2020) no. 2, p. 124007 | DOI:10.1016/j.jmaa.2020.124007
- Accelerating propagation in a recursive system arising from seasonal population models with nonlocal dispersal, Journal of Differential Equations, Volume 267 (2019) no. 1, p. 150 | DOI:10.1016/j.jde.2019.01.009
- Nonlocal equations with regular varying decay solutions, Journal of Differential Equations, Volume 267 (2019) no. 8, p. 4807 | DOI:10.1016/j.jde.2019.05.018
- Blowup of solutions for nonlinear nonlocal heat equations, Monatshefte für Mathematik, Volume 189 (2019) no. 4, p. 611 | DOI:10.1007/s00605-019-01269-7
- Weighted Lp estimates and Fujita exponent for a nonlocal equation, Nonlinear Analysis, Volume 184 (2019), p. 321 | DOI:10.1016/j.na.2019.02.027
- Around a singular solution of a nonlocal nonlinear heat equation, Nonlinear Differential Equations and Applications NoDEA, Volume 26 (2019) no. 1 | DOI:10.1007/s00030-019-0552-z
- The spreading speed and the minimal wave speed of a predator–prey system with nonlocal dispersal, Zeitschrift für angewandte Mathematik und Physik, Volume 70 (2019) no. 5 | DOI:10.1007/s00033-019-1188-x
- Second critical exponent for a nonlinear nonlocal diffusion equation, Applied Mathematics Letters, Volume 81 (2018), p. 57 | DOI:10.1016/j.aml.2018.02.002
- The hair-trigger effect for a class of nonlocal nonlinear equations, Nonlinearity, Volume 31 (2018) no. 6, p. 2442 | DOI:10.1088/1361-6544/aab1cb
Cité par 23 documents. Sources : Crossref