A Keller–Segel type system in higher dimensions
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 961-971.

We analyze an equation that is gradient flow of a functional related to Hardy–Littlewood–Sobolev inequality in whole Euclidean space Rd, d3. Under the hypothesis of integrable initial data with finite second moment and energy, we show local-in-time existence for any mass of “free-energy solutions”, namely weak solutions with some free energy estimates. We exhibit that the qualitative behavior of solutions is decided by a critical value. Actually, there is a critical value of a parameter in the equation below which there is a global-in-time energy solution and above which there exist blowing-up energy solutions.

DOI : 10.1016/j.anihpc.2016.08.002
Classification : 35K65, 35B45, 35J20
Mots clés : Degenerate parabolic equation, Energy functional, Gradient flow, Free-energy solutions, Blow-up, Global existence
@article{AIHPC_2017__34_4_961_0,
     author = {Ulusoy, Suleyman},
     title = {A {Keller{\textendash}Segel} type system in higher dimensions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {961--971},
     publisher = {Elsevier},
     volume = {34},
     number = {4},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.08.002},
     mrnumber = {3661866},
     zbl = {1435.35205},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.08.002/}
}
TY  - JOUR
AU  - Ulusoy, Suleyman
TI  - A Keller–Segel type system in higher dimensions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 961
EP  - 971
VL  - 34
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2016.08.002/
DO  - 10.1016/j.anihpc.2016.08.002
LA  - en
ID  - AIHPC_2017__34_4_961_0
ER  - 
%0 Journal Article
%A Ulusoy, Suleyman
%T A Keller–Segel type system in higher dimensions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 961-971
%V 34
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2016.08.002/
%R 10.1016/j.anihpc.2016.08.002
%G en
%F AIHPC_2017__34_4_961_0
Ulusoy, Suleyman. A Keller–Segel type system in higher dimensions. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 961-971. doi : 10.1016/j.anihpc.2016.08.002. http://www.numdam.org/articles/10.1016/j.anihpc.2016.08.002/

[1] Ambrosio, L.A.; Gigli, N.; Savaré, G. Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures Math., Birkhäuser, 2005 | MR

[2] Blanchet, A.; Carrillo, J.A.; Carlen, E.A. Functional inequalities, thick tails and asymptotics for the critical mass Patlak–Keller–Segel model, J. Funct. Anal., Volume 262 (2012), pp. 2142–2230 | MR | Zbl

[3] Blanchet, A.; Carrillo, J.A.; Laurençot, P. Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differ. Equ., Volume 35 (2009), pp. 133–168 | MR | Zbl

[4] Blanchet, A.; Carrillo, J.A.; Masmoudi, N. Infinite time aggregation for for the critical two-dimensional Patlak–Keller–Segel model, Commun. Pure Appl. Math., Volume 61 (2008), pp. 1449–1481 | MR | Zbl

[5] Blanchet, A.; Dolbeault, J.; Perthame, B. Two dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differ. Equ., Volume 44 (2006) (32 pp) | MR | Zbl

[6] Carlen, E.A.; Ulusoy, S. Localization, smoothness, and convergence to equilibrium for a thin film equation, Discrete Contin. Dyn. Syst., Ser. A, Volume 34 (2014) no. 11, pp. 4537–4553 | MR | Zbl

[7] E.A. Carlen, S. Ulusoy, Dissipation for a non-convex gradient flow problem of a Patlak–Keller–Segel type for densities on Rn, n3, in preparation.

[8] Carrillo, J.A.; McCann, R.J.; Villani, C. Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam., Volume 19 (2003), pp. 1–48 | MR | Zbl

[9] Carrillo, J.A.; McCann, R.J.; Villani, C. Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., Volume 179 (2006), pp. 217–263 | MR | Zbl

[10] Chen, L.; Liu, J.G.; Wang, J. Multidimensional degenerate Keller–Segel system with critical diffusion exponent 2n/(n+2) , SIAM J. Math. Anal., Volume 44 (2012) no. 2, pp. 1077–1102 | MR | Zbl

[11] Dolbeault, J.; Perthame, B. Optimal critical mass in two-dimensional Keller–Segel model in R2 , C. R. Math. Acad. Sci. Paris, Volume 339 (2004), pp. 611–616 | MR | Zbl

[12] Gianazza, U.; Savaré, G.; Toscani, G. The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. Ration. Mech. Anal., Volume 194 (2009), pp. 133–220 | MR | Zbl

[13] Glassey, R.T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., Volume 18 (1977) no. 9, pp. 1794–1797 | MR | Zbl

[14] Jordan, R.; Kinderlehrer, D.; Otto, F. The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., Volume 29 (1998) no. 1, pp. 1–17 | MR | Zbl

[15] Keller, E.F.; Segel, L.A. Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399–415 | MR | Zbl

[16] Lieb, E.H. Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math., Volume 118 (1983) no. 2, pp. 349–374 | MR | Zbl

[17] Matthes, D.; McCann, R.J.; Savaré, G. A family of nonlinear fourth order equations of gradient flow type, Commun. Partial Differ. Equ., Volume 34 (2009) no. 10–12, pp. 1352–1397 | MR | Zbl

[18] McCann, R.J. A convexity principle for interacting gases, Adv. Math., Volume 128 (1997) no. 1, pp. 153–179 | MR | Zbl

[19] Ogawa, T. Decay and asymptotic behavior of solutions of the Keller–Segel system of degenerate and nondegenerate type, Self-Similar Solutions of Nonlinear PDE, vol. 74, Banach Center Publ., Polish Acad. of Sci., Warsaw, 2006, pp. 161–184 | MR | Zbl

[20] Otto, F. The geometry of dissipative evolution equations: the porous medium equation, Commun. Partial Differ. Equ., Volume 26 (2001), pp. 101–174 | MR | Zbl

[21] Patlak, C.S. Random walk with persistence and external bias, Bull. Math. Biophys., Volume 15 (1953), pp. 311–338 | MR | Zbl

[22] Sugiyama, Y. Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel system, Differ. Integral Equ., Volume 19 (2006), pp. 841–876 | MR | Zbl

[23] Sugiyama, Y. Application of the best constant of the Sobolev inequality to degenerate Keller–Segel models, Adv. Differ. Equ., Volume 12 (2007), pp. 121–144 | MR | Zbl

[24] Tsutsumi, M. Periodic linear systems and a class of nonlinear evolution equations, Mem. School Sci. Engrg. Waseda Univ., Volume 41 (1978), pp. 73–94 | MR | Zbl

[25] Tsutsumi, Y. Rate of L2 concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power, Nonlinear Anal., Volume 15 (1990) no. 8, pp. 719–724 | DOI | MR | Zbl

[26] Villani, C. Topics in Optimal Transportation, American Mathematical Society, 2003 | MR | Zbl

[27] Weinstein, M.I. Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Volume 87 (1983), pp. 567–576 | MR | Zbl

Cité par Sources :