Dans cet article nous étudions le comportment en temps long infini des solutions d'un système du Boussinesq partiellement dissipatif, dont une est parabolique et l'autre est hyperbolique. Dans ce but, nous introduisons un attracteur universel qui retient plusieurs proprietés des attracteurs universels des équations de Navier–Stokes en dimension deux ou trois, et qui contient une infinité de varietés invariantes dans lesquelles plusieurs proprietés universelles de la théorie de la turbulence bidimensionnelle de Batchelor, Kraichnan et Leith, sont potentiellement présentes.
In this article, we study the long time behavior of solutions of a variant of the Boussinesq system in which the equation for the velocity is parabolic while the equation for the temperature is hyperbolic. We prove that the system has a global attractor which retains some of the properties of the global attractors for the 2D and 3D Navier–Stokes equations. Moreover, this attractor contains infinitely many invariant manifolds in which several universal properties of the Batchelor, Kraichnan, Leith theory of turbulence are potentially present.
Mots clés : Boussinesq equations, Global attractor, Semi-dissipative system, Navier–Stokes equations, Turbulence
@article{AIHPC_2017__34_2_381_0, author = {Biswas, Animikh and Foias, Ciprian and Larios, Adam}, title = {On the attractor for the semi-dissipative {Boussinesq} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {381--405}, publisher = {Elsevier}, volume = {34}, number = {2}, year = {2017}, doi = {10.1016/j.anihpc.2015.12.006}, zbl = {1361.35138}, mrnumber = {3610937}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.12.006/} }
TY - JOUR AU - Biswas, Animikh AU - Foias, Ciprian AU - Larios, Adam TI - On the attractor for the semi-dissipative Boussinesq equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 381 EP - 405 VL - 34 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2015.12.006/ DO - 10.1016/j.anihpc.2015.12.006 LA - en ID - AIHPC_2017__34_2_381_0 ER -
%0 Journal Article %A Biswas, Animikh %A Foias, Ciprian %A Larios, Adam %T On the attractor for the semi-dissipative Boussinesq equations %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 381-405 %V 34 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2015.12.006/ %R 10.1016/j.anihpc.2015.12.006 %G en %F AIHPC_2017__34_2_381_0
Biswas, Animikh; Foias, Ciprian; Larios, Adam. On the attractor for the semi-dissipative Boussinesq equations. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 381-405. doi : 10.1016/j.anihpc.2015.12.006. http://www.numdam.org/articles/10.1016/j.anihpc.2015.12.006/
[1] Sobolev Spaces, Pure Appl. Math. (Amst.), vol. 140, Elsevier/Academic Press, Amsterdam, 2003 | MR | Zbl
[2] 2-D turbulence for forcing in all scales, J. Math. Pures Appl. (9), Volume 94 (2010) no. 1, pp. 1–32 | DOI | MR | Zbl
[3] Sur l'unicité rétrograde des équations d'évolution, C.R. Acad. Sci. Paris Ser. A-B, Volume 273 (1971), pp. A1239–A1241 | MR | Zbl
[4] The Theory of Homogeneous Turbulence, Cambridge University Press, 1953 | MR
[5] Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., Volume 203 (2006) no. 2, pp. 497–513 | DOI | MR | Zbl
[6] Attractors Representing Turbulent Flows, Memoirs of the AMS, vol. 53, American Mathematical Society, Providence, RI, 1985 | DOI | MR
[7] Navier–Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988 | MR | Zbl
[8] Les théorèmes de Leray et de Fujita–Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. Fr., Volume 136 (2008) no. 2, pp. 261–309 | Numdam | MR | Zbl
[9] Relations between energy and enstrophy on the global attractor of the 2-D Navier–Stokes equations, J. Dyn. Differ. Equ., Volume 17 (2005) no. 4, pp. 643–736 | DOI | MR | Zbl
[10] Universal bounds on the attractor of the Navier–Stokes equation in the energy, enstrophy plane, J. Math. Phys., Volume 48 (2007) no. 6 | DOI | MR | Zbl
[11] Some specific mathematical constraints on 2D turbulence, Phys. D, Volume 237 (2008) no. 23, pp. 3020–3029 | DOI | MR | Zbl
[12] Estimates on enstrophy, palinstrophy, and invariant measures for 2-D turbulence, J. Differ. Equ., Volume 248 (2010) no. 4, pp. 792–819 | DOI | MR | Zbl
[13] Ordinary differential equations, transport theory and Sobolev Spaces, Invent. Math., Volume 98 (1989), pp. 511–547 | DOI | MR | Zbl
[14] Partial Differential Equations, Grad. Stud. Math., vol. 19, American Mathematical Society, Providence, RI, 2010 | MR | Zbl
[15] Kraichnan turbulence via finite-time averages, Commun. Math. Phys., Volume 255 (2005) no. 2, pp. 329–361 | DOI | MR | Zbl
[16] Statistical estimates for the Navier–Stokes equations and the Kraichnan theory of 2-d fully developed turbulence, J. Stat. Phys., Volume 108 (2002) no. 3–4, pp. 591–645 | MR | Zbl
[17] Kolmogorov theory via finite-time averages, Phys. D, Nonlinear Phenom., Volume 212 (2005) no. 3, pp. 245–270 | MR | Zbl
[18] Navier–Stokes Equations and Turbulence, Encyclopedia of Mathematics and Its Applications, vol. 83, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[19] Attractors for the Bénard problem: existence and physical bounds on their fractal dimension, Nonlinear Anal., Theory Methods Appl., Volume 11 (1987) no. 8, pp. 939–967 | DOI | MR | Zbl
[20] Cascade of energy in turbulent flows, C. R. Acad. Sci., Ser. 1 Math., Volume 332 (2001) no. 6, pp. 509–514 | MR | Zbl
[21] Estimates for the energy cascade in three-dimensional turbulent flows, C. R. Acad. Sci., Ser. 1 Math., Volume 333 (2001) no. 5, pp. 499–504 | MR | Zbl
[22] Topological properties of the weak global attractor of the three-dimensional Navier–Stokes equations, Discrete Contin. Dyn. Syst., Volume 27 (2010) no. 4, pp. 1611–1631 | DOI | MR | Zbl
[23] Asymptotic behaviour, as of solutions of Navier–Stokes equations and nonlinear spectral manifolds, Indiana Univ. Math. J., Volume 33 (1984) no. 3, pp. 459–477 | DOI | MR | Zbl
[24] The connection between the Navier–Stokes equations, dynamical systems, and turbulence theory, Directions in Partial Differential Equations, 1987, pp. 55–73 | DOI | MR | Zbl
[25] On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differ. Equ., Volume 12 (2007) no. 4, pp. 461–480 | MR | Zbl
[26] An Introduction to Dynamic Meteorology, International Geophysics Series, Elsevier Academic Press, 2004
[27] Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., Volume 12 (2005) no. 1, pp. 1–12 | MR | Zbl
[28] Persistence of regularity for a viscous Boussinesq equations with zero diffusivity, Asymptot. Anal., Volume 91 (2015) no. 2, pp. 111–124 | MR | Zbl
[29] On the regularity for the Boussinesq equations in a bounded domain, J. Math. Phys., Volume 54 (2013) no. 8 | MR | Zbl
[30] Dissipation of energy in isotropic turbulence, Dokl. Akad. Nauk SSSR, Volume 32 (1941), pp. 19–21 | Zbl
[31] The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers, Dokl. Akad. Nauk SSSR, Volume 30 (1941), pp. 299–303 | JFM | MR
[32] On the degeneration of isotropic turbulence in an incompressible viscous fluids, Dokl. Akad. Nauk SSSR, Volume 31 (1941), pp. 538–541 | JFM | MR | Zbl
[33] Inertial ranges in two-dimensional turbulence, Phys. Fluids, Volume 10 (1967), pp. 1417–1423 | DOI
[34] Initial boundary value problem for two-dimensional viscous Boussinesq equations, Arch. Ration. Mech. Anal., Volume 199 (2011) no. 3, pp. 739–760 | MR | Zbl
[35] Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differ. Equ., Volume 255 (2013) no. 9, pp. 2636–2654 | DOI | MR | Zbl
[36] Introduction to PDEs and Waves for the Atmosphere and Ocean, vol. 9, American Mathematical Soc., 2003 | DOI | MR | Zbl
[37] An example of absence of turbulence for any Reynolds number, Commun. Math. Phys., Volume 105 (1986) no. 1, pp. 99–106 | DOI | MR | Zbl
[38] An example of absence of turbulence for any Reynolds number. II, Commun. Math. Phys., Volume 108 (1987) no. 4, pp. 647–651 | DOI | MR | Zbl
[39] An Introduction to the Geometry and Topology of Fluid Flows, NATO Sci. Ser. II Math. Phys. Chem., Volume vol. 47, Kluwer Acad. Publ., Dordrecht (2001), pp. 3–10 (Cambridge, 2000) | MR | Zbl
[40] Geophysical Fluid Dynamics, Springer Science & Business Media, 2013
[41] An introduction to dissipative parabolic PDEs and the theory of global attractors, Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[42] Lectures on Geophysical Fluid Dynamics, Oxford Univ. Press, 1998 | DOI | MR
[43] Navier–Stokes Equations and Nonlinear Functional Analysis, CBMS–NSF Regional Conference Series in Applied Mathematics, vol. 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995 | MR | Zbl
[44] Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997 | MR | Zbl
[45] Navier–Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001 (Theory and Numerical Analysis, Reprint of the 1984 edition) | MR | Zbl
[46] Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press, Cambridge, U.K., 2006 | DOI
Cité par Sources :