L 2-contraction for shock waves of scalar viscous conservation laws
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 139-156.

We consider the L2-contraction up to a shift for viscous shocks of scalar viscous conservation laws with strictly convex fluxes in one space dimension. In the case of a flux which is a small perturbation of the quadratic Burgers flux, we show that any viscous shock induces a contraction in L2, up to a shift. That is, the L2 norm of the difference of any solution of the viscous conservation law, with an appropriate shift of the shock wave, does not increase in time. If, in addition, the difference between the initial value of the solution and the shock wave is also bounded in L1, the L2 norm of the difference converges at the optimal rate t1/4. Both results do not involve any smallness condition on the initial value, nor on the size of the shock. In this context of small perturbations of the quadratic Burgers flux, the result improves the Choi and Vasseur's result in [7]. However, we show that the L2-contraction up to a shift does not hold for every convex flux. We construct a smooth strictly convex flux, for which the L2-contraction does not hold any more even along any Lipschitz shift.

DOI : 10.1016/j.anihpc.2015.10.004
Classification : 35L65, 35L67, 35B35, 35B40
Mots clés : Viscous conservation laws, Shock wave, Stability, Contraction, Relative entropy
@article{AIHPC_2017__34_1_139_0,
     author = {Kang, Moon-Jin and Vasseur, Alexis F.},
     title = {\protect\emph{L}         \protect\textsuperscript{2}-contraction for shock waves of scalar viscous conservation laws},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {139--156},
     publisher = {Elsevier},
     volume = {34},
     number = {1},
     year = {2017},
     doi = {10.1016/j.anihpc.2015.10.004},
     mrnumber = {3592682},
     zbl = {1368.35183},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.10.004/}
}
TY  - JOUR
AU  - Kang, Moon-Jin
AU  - Vasseur, Alexis F.
TI  - L         2-contraction for shock waves of scalar viscous conservation laws
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 139
EP  - 156
VL  - 34
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2015.10.004/
DO  - 10.1016/j.anihpc.2015.10.004
LA  - en
ID  - AIHPC_2017__34_1_139_0
ER  - 
%0 Journal Article
%A Kang, Moon-Jin
%A Vasseur, Alexis F.
%T L         2-contraction for shock waves of scalar viscous conservation laws
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 139-156
%V 34
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2015.10.004/
%R 10.1016/j.anihpc.2015.10.004
%G en
%F AIHPC_2017__34_1_139_0
Kang, Moon-Jin; Vasseur, Alexis F. L         2-contraction for shock waves of scalar viscous conservation laws. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 139-156. doi : 10.1016/j.anihpc.2015.10.004. http://www.numdam.org/articles/10.1016/j.anihpc.2015.10.004/

[1] Bardos, C.; Golse, F.; Levermore, C.D. Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Stat. Phys., Volume 63 (1991) no. 1–2, pp. 323–344 | MR

[2] Bardos, C.; Golse, F.; Levermore, C.D. Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation, Commun. Pure Appl. Math., Volume 46 (1993) no. 5, pp. 667–753 | DOI | MR | Zbl

[3] Berthelin, F.; Tzavaras, A.E.; Vasseur, A. From discrete velocity Boltzmann equations to gas dynamics before shocks, J. Stat. Phys., Volume 135 (2009) no. 1, pp. 153–173 | DOI | MR | Zbl

[4] Berthelin, F.; Vasseur, A. From kinetic equations to multidimensional isentropic gas dynamics before shocks, SIAM J. Math. Anal., Volume 36 (2005) no. 6, pp. 1807–1835 | DOI | MR | Zbl

[5] Bolley, F.; Brenier, Y.; Loeper, G. Contractive metrics for scalar conservation laws, J. Hyperbolic Differ. Equ., Volume 2 (2005), pp. 91–107 | DOI | MR | Zbl

[6] Carrillo, J.A.; Di Francesco, M.; Lattanzio, C. Contractivity and asymptotics in Wasserstein metrics for viscous nonlinear scalar conservation laws, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., Volume 10 (2007) no. 8, pp. 277–292 | MR | Zbl

[7] Choi, K.; Vasseur, A. Short-time stability of scalar viscous shocks in the inviscid limit by the relative entropy method, SIAM J. Math. Anal., Volume 47 (2015), pp. 1405–1418 | DOI | MR | Zbl

[8] Chua, S.-K.; Wheeden, R.L. Sharp conditions for weighted 1-dimensional Poincaré inequalities, Indiana Univ. Math. J., Volume 49 (2000), pp. 143–175 | MR | Zbl

[9] Dafermos, C.M. The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., Volume 70 (1979) no. 2, pp. 167–179 | DOI | MR | Zbl

[10] Freistühler, H.; Serre, D. L1 stability of shock waves in scalar viscous conservation laws, Commun. Pure Appl. Math., Volume 51 (1998), pp. 291–301 | DOI | MR | Zbl

[11] Goodman, J. Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Ration. Mech. Anal., Volume 95 (1986), pp. 325–344 | DOI | MR | Zbl

[12] Goodman, J. Stability of viscous scalar shock fronts in several dimensions, Trans. Am. Math. Soc., Volume 311 (1989), pp. 683–695 | DOI | MR | Zbl

[13] Hopf, E. The partial differential equation ut+uux=μuxx , Commun. Pure Appl. Math., Volume 3 (1950), pp. 201–230 | DOI | MR | Zbl

[14] Howard, P. Pointwise Green's function approach to stability for scalar conservation laws, Commun. Pure Appl. Math., Volume 52 (1999), pp. 1295–1313 | DOI | MR | Zbl

[15] Kang, M.-J.; Vasseur, A. Asymptotic analysis of Vlasov-type equations under strong local alignment regime, Math. Models Methods Appl. Sci., Volume 25 (2015), pp. 2153–2173 | MR | Zbl

[16] Kenig, C.E.; Merle, F. Asymptotic stability and Liouville theorem for scalar viscous conservation laws in cylinders, Commun. Pure Appl. Math., Volume 59 (2006), pp. 769–796 | DOI | MR | Zbl

[17] Kruzkhov, S.N. Generalized solutions of the Cauchy problem in the large for nonlinear equations of first order, Dokl. Akad. Nauk SSSR, Volume 187 (1969), pp. 29–32 | MR | Zbl

[18] Leger, N. L2 stability estimates for shock solutions of scalar conservation laws using the relative entropy method, Arch. Ration. Mech. Anal., Volume 199 (2011) no. 3, pp. 761–778 | DOI | MR | Zbl

[19] Leger, N.; Vasseur, A. Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations, Arch. Ration. Mech. Anal., Volume 201 (2011) no. 1, pp. 271–302 | DOI | MR | Zbl

[20] Lions, P.-L.; Masmoudi, N. From the Boltzmann equations to the equations of incompressible fluid mechanics. I, Arch. Ration. Mech. Anal., Volume 158 (2001) no. 3, pp. 173–193 | MR | Zbl

[20] Lions, P.-L.; Masmoudi, N. From the Boltzmann equations to the equations of incompressible fluid mechanics. II, Arch. Ration. Mech. Anal., Volume 158 (2001) no. 3, pp. 195–211 | MR | Zbl

[21] Liu, T.-P. Nonlinear stability of shock waves for viscous conservation laws, Mem. Am. Math. Soc., Volume 56 (1985), pp. 233–236 | MR | Zbl

[22] Liu, T.-P. Pointwise convergence to shock waves for viscous conservation laws, Commun. Pure Appl. Math., Volume 50 (1997) no. 11, pp. 1113–1182 | MR | Zbl

[23] Liu, T.-P.; Zumbrun, K. On nonlinear stability of general undercompressive viscous shock waves, Commun. Math. Phys., Volume 174 (1995) no. 2, pp. 319–345 | MR | Zbl

[24] Mellet, A.; Vasseur, A. Asymptotic analysis for a Vlasov–Fokker–Planck/compressible Navier–Stokes system of equations, Commun. Math. Phys., Volume 281 (2008) no. 3, pp. 573–596 | DOI | MR | Zbl

[25] Nishihara, K. A note on the stability of travelling wave solutions of the Burgers' equation, Jpn. J. Appl. Math., Volume 2 (1985) no. 1, pp. 27–35 | DOI | MR | Zbl

[26] Saint-Raymond, L. Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration. Mech. Anal., Volume 166 (2003) no. 1, pp. 47–80 | DOI | MR | Zbl

[27] Serre, D. L1-stability of nonlinear waves in scalar conservation laws, Evolutionary Equations, vol. I, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, pp. 473–553 | MR | Zbl

[28] D. Serre, A. Vasseur, L2-type contraction for systems of conservation laws, Preprint. | MR | Zbl

[29] Szepessy, A.; Xin, Z.-P. Nonlinear stability of viscous shock waves, Arch. Ration. Mech. Anal., Volume 122 (1993), pp. 53–104 | DOI | MR | Zbl

[30] Tzavaras, A.E. Relative entropy in hyperbolic relaxation, Commun. Math. Sci., Volume 3 (2005) no. 2, pp. 119–132 | DOI | MR | Zbl

[31] Vasseur, A. Relative entropy and contraction for extremal shocks of conservation laws up to a shift, Contemp. Math. AMS (2015) (in press) | MR

[32] Vasseur, A. Recent results on hydrodynamic limits, Evolutionary Equations, vol. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, pp. 323–376 | MR | Zbl

[33] Yau, H.-T. Relative entropy and hydrodynamics of Ginzburg–Landau models, Lett. Math. Phys., Volume 22 (1991) no. 1, pp. 63–80 | MR | Zbl

Cité par Sources :