Optimal L p Hardy-type inequalities
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 93-118.

Let Ω be a domain in Rn or a noncompact Riemannian manifold of dimension n2, and 1<p<. Consider the functional Q(φ):=Ω(|φ|p+V|φ|p)dν defined on C0(Ω), and assume that Q0. The aim of the paper is to generalize to the quasilinear case (p2) some of the results obtained in [6] for the linear case (p=2), and in particular, to obtain “as large as possible” nonnegative (optimal) Hardy-type weight W satisfying

Q(φ)ΩW|φ|pdνφC0(Ω).

Our main results deal with the case where V=0, and Ω is a general punctured domain (for V0 we obtain only some partial results). In the case 1<pn, an optimal Hardy-weight is given by

W:=(p1p)p|GG|p,
where G is the associated positive minimal Green function with a pole at 0. On the other hand, for p>n, several cases should be considered, depending on the behavior of G at infinity in Ω. The results are extended to annular and exterior domains.

DOI : 10.1016/j.anihpc.2014.08.005
Mots-clés : Hardy inequality, Optimal, p-Laplacian
@article{AIHPC_2016__33_1_93_0,
     author = {Devyver, Baptiste and Pinchover, Yehuda},
     title = {Optimal {\protect\emph{L}}         \protect\textsuperscript{            \protect\emph{p}         } {Hardy-type} inequalities},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {93--118},
     publisher = {Elsevier},
     volume = {33},
     number = {1},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.08.005},
     mrnumber = {3436428},
     zbl = {1331.35013},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2014.08.005/}
}
TY  - JOUR
AU  - Devyver, Baptiste
AU  - Pinchover, Yehuda
TI  - Optimal L                     p          Hardy-type inequalities
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 93
EP  - 118
VL  - 33
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2014.08.005/
DO  - 10.1016/j.anihpc.2014.08.005
LA  - en
ID  - AIHPC_2016__33_1_93_0
ER  - 
%0 Journal Article
%A Devyver, Baptiste
%A Pinchover, Yehuda
%T Optimal L                     p          Hardy-type inequalities
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 93-118
%V 33
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2014.08.005/
%R 10.1016/j.anihpc.2014.08.005
%G en
%F AIHPC_2016__33_1_93_0
Devyver, Baptiste; Pinchover, Yehuda. Optimal L                     p          Hardy-type inequalities. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 93-118. doi : 10.1016/j.anihpc.2014.08.005. https://www.numdam.org/articles/10.1016/j.anihpc.2014.08.005/

[1] Adimurthi; Sekar, A. Role of the fundamental solution in Hardy–Sobolev-type inequalities, Proc. R. Soc. Edinb. A, Volume 136 (2006), pp. 1111–1130 | DOI | MR | Zbl

[2] Allegretto, W.; Huang, Y.X. A Picone's identity for the p-Laplacian and applications, Nonlinear Anal., Volume 32 (1998), pp. 819–830 | DOI | MR | Zbl

[3] Bojarski, B.; Hajłasz, P.; Strzelecki, P. Sard's theorem for mappings in Hölder and Sobolev spaces, Manuscr. Math., Volume 118 (2005), pp. 383–397 | DOI | MR | Zbl

[4] Chen, G.-Q.; Torres, M.; Ziemer, W.P. Gauss–Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws, Commun. Pure Appl. Math., Volume 62 (2009), pp. 242–304 | MR | Zbl

[5] D'Ambrosio, L.; Dipierro, S. Hardy inequalities on Riemannian manifolds and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014), pp. 449–475 | DOI | Numdam | MR | Zbl

[6] Devyver, B.; Fraas, M.; Pinchover, Y. Optimal Hardy weight for second-order elliptic operator: an answer to a problem of Agmon, J. Funct. Anal., Volume 266 (2014), pp. 4422–4489 | DOI | MR | Zbl

[7] Davies, E.B.; Hinz, A.M. Explicit constants for Rellich inequalities in Lp(Ω) , Math. Z., Volume 227 (1998), pp. 511–523 | DOI | MR | Zbl

[8] Fraas, M.; Pinchover, Y. Isolated singularities of positive solutions of p-Laplacian type equations in Rd , J. Differ. Equ., Volume 254 (2013), pp. 1097–1119 | DOI | MR | Zbl

[9] García-Melián, J.; Sabina de Lis, J. Maximum and comparison principles for operators involving the p-Laplacian, J. Math. Anal. Appl., Volume 218 (1998), pp. 49–65 | DOI | MR | Zbl

[10] Ladyženskaja, O.A.; Ural'ceva, N.N. A variational problem for quasilinear elliptic equations with many independent variables, Sov. Math. Dokl., Volume 1 (1960), pp. 1390–1394 | MR | Zbl

[11] Maz'ya, V. Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 342, Springer, Heidelberg, 2011 | MR | Zbl

[12] Pinchover, Y. On criticality and ground states of second-order elliptic equations II, J. Differ. Equ., Volume 87 (1990), pp. 353–364 | DOI | MR | Zbl

[13] Pinchover, Y.; Tintarev, K. Ground state alternative for p-Laplacian with potential term, Calc. Var. Partial Differ. Equ., Volume 28 (2007), pp. 179–201 | MR | Zbl

[14] Pinchover, Y.; Tintarev, K.; Maz'ya, V. On the Hardy–Sobolev–Maz'ya inequality and its generalizations, Sobolev Spaces in Mathematics I: Sobolev Type Inequalities, International Mathematical Series, vol. 8, Springer, 2009, pp. 281–297 | DOI | MR | Zbl

[15] Pinchover, Y.; Tertikas, A.; Tintarev, K. A Liouville-type theorem for the p-Laplacian with potential term, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008), pp. 357–368 | DOI | Numdam | MR | Zbl

[16] Poliakovsky, A.; Shafrir, I. Uniqueness of positive solutions for singular problems involving the p-Laplacian, Proc. Am. Math. Soc., Volume 133 (2005), pp. 2549–2557 | DOI | MR | Zbl

[17] Pucci, P.; Serrin, J. The Maximum Principle, Progress in Nonlinear Differential Equations and Their Applications, vol. 73, Birkhäuser Verlag, Basel, 2007 | MR | Zbl

[18] Serrin, J. Local behavior of solutions of quasi-linear equations, Acta Math., Volume 111 (1964), pp. 247–302 | DOI | MR | Zbl

[19] Serrin, J. Isolated singularities of solutions of quasi-linear equations, Acta Math., Volume 113 (1965), pp. 219–240 | DOI | MR | Zbl

[20] Tolksdorf, P. Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ., Volume 51 (1984), pp. 126–150 | DOI | MR | Zbl

  • Murmann, Simon; Schmidt, Marcel Harris’ Criterion and Hardy Inequalities on Graphs, Integral Equations and Operator Theory, Volume 97 (2025) no. 2 | DOI:10.1007/s00020-025-02794-x
  • Fischer, Florian; Peyerimhoff, Norbert Sharp Hardy-type inequalities for non-compact harmonic manifolds and Damek–Ricci spaces, Israel Journal of Mathematics (2025) | DOI:10.1007/s11856-024-2713-y
  • Fischer, Florian On the optimality and decay of p-Hardy weights on graphs, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 7 | DOI:10.1007/s00526-024-02754-0
  • Cinti, Eleonora; Prinari, Francesca On fractional Hardy-type inequalities in general open sets, ESAIM: Control, Optimisation and Calculus of Variations, Volume 30 (2024), p. 77 | DOI:10.1051/cocv/2024066
  • Das, Ujjal; Pinchover, Yehuda The space of Hardy-weights for quasilinear equations: Maz’ya-type characterization and sufficient conditions for existence of minimizers, Journal d'Analyse Mathématique, Volume 153 (2024) no. 1, p. 331 | DOI:10.1007/s11854-023-0318-8
  • Roychowdhury, Prasun; Ruzhansky, Michael; Suragan, Durvudkhan Multidimensional Frank–Laptev–Weidl improvement of the hardy inequality, Proceedings of the Edinburgh Mathematical Society, Volume 67 (2024) no. 1, p. 151 | DOI:10.1017/s0013091523000780
  • Marini, Ludovico; Veronelli, Giona Some Functional Properties on Cartan–Hadamard Manifolds of Very Negative Curvature, The Journal of Geometric Analysis, Volume 34 (2024) no. 4 | DOI:10.1007/s12220-023-01541-1
  • Fischer, Florian A non-local quasi-linear ground state representation and criticality theory, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 5 | DOI:10.1007/s00526-023-02496-5
  • Fischer, Florian; Keller, Matthias; Pogorzelski, Felix An Improved Discrete p-Hardy Inequality, Integral Equations and Operator Theory, Volume 95 (2023) no. 4 | DOI:10.1007/s00020-023-02743-6
  • Miura, Yusuke Optimal Hardy Inequalities for Schrödinger Operators Based on Symmetric Stable Processes, Journal of Theoretical Probability, Volume 36 (2023) no. 1, p. 134 | DOI:10.1007/s10959-022-01164-2
  • Pinchover, Yehuda; Versano, Idan Optimal Hardy‐weights for elliptic operators with mixed boundary conditions, Mathematika, Volume 69 (2023) no. 4, p. 1221 | DOI:10.1112/mtk.12226
  • Versano, Idan Optimal Hardy-weights for the (p, A)-Laplacian with a potential term, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 153 (2023) no. 1, p. 289 | DOI:10.1017/prm.2021.85
  • Flynn, Joshua; Lam, Nguyen; Lu, Guozhen; Mazumdar, Saikat Hardy’s Identities and Inequalities on Cartan-Hadamard Manifolds, The Journal of Geometric Analysis, Volume 33 (2023) no. 1 | DOI:10.1007/s12220-022-01079-8
  • Wang, Jianxiong LpHardy's identities and inequalities for Dunkl operators, Advanced Nonlinear Studies, Volume 22 (2022) no. 1, p. 416 | DOI:10.1515/ans-2022-0020
  • JIN, YONGYANG; SHEN, SHOUFENG SOME -HARDY AND -RELLICH TYPE INEQUALITIES WITH REMAINDER TERMS, Journal of the Australian Mathematical Society, Volume 113 (2022) no. 1, p. 79 | DOI:10.1017/s1446788721000100
  • Kovařík, Hynek; Pinchover, Yehuda On minimal decay at infinity of Hardy-weights, Communications in Contemporary Mathematics, Volume 22 (2020) no. 05, p. 1950046 | DOI:10.1142/s0219199719500469
  • Pinchover, Yehuda; Versano, Idan On families of optimal Hardy-weights for linear second-order elliptic operators, Journal of Functional Analysis, Volume 278 (2020) no. 9, p. 108428 | DOI:10.1016/j.jfa.2019.108428
  • Lam, Nguyen; Lu, Guozhen; Zhang, Lu Geometric Hardy's inequalities with general distance functions, Journal of Functional Analysis, Volume 279 (2020) no. 8, p. 108673 | DOI:10.1016/j.jfa.2020.108673
  • Nguyen, Phuoc-Tai; Vo, Hoang-Hung On the generalized principal eigenvalue of quasilinear operator: definitions and qualitative properties, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 3 | DOI:10.1007/s00526-019-1523-2
  • Byeon, Jaeyoung; Takahashi, Futoshi Hardy’s inequality in a limiting case on general bounded domains, Communications in Contemporary Mathematics, Volume 21 (2019) no. 08, p. 1850070 | DOI:10.1142/s0219199718500700
  • Keller, Matthias; Pinchover, Yehuda; Pogorzelski, Felix Optimal Hardy inequalities for Schrödinger operators on graphs, Communications in Mathematical Physics, Volume 358 (2018) no. 2, p. 767 | DOI:10.1007/s00220-018-3107-y
  • Cassani, D.; Ruf, B.; Tarsi, C. Equivalent and attained version of Hardy's inequality in Rn, Journal of Functional Analysis, Volume 275 (2018) no. 12, p. 3303 | DOI:10.1016/j.jfa.2018.09.008
  • Pessoa, Leandro F.; Pigola, Stefano; Setti, Alberto G. Dirichlet parabolicity and L1-Liouville property under localized geometric conditions, Journal of Functional Analysis, Volume 273 (2017) no. 2, p. 652 | DOI:10.1016/j.jfa.2017.03.016
  • Berchio, Elvise; D’Ambrosio, Lorenzo; Ganguly, Debdip; Grillo, Gabriele ImprovedLp-Poincaré inequalities on the hyperbolic space, Nonlinear Analysis, Volume 157 (2017), p. 146 | DOI:10.1016/j.na.2017.03.016
  • Bianchini, Bruno; Mari, Luciano; Rigoli, Marco Yamabe type equations with a sign-changing nonlinearity, and the prescribed curvature problem, Journal of Differential Equations, Volume 260 (2016) no. 10, p. 7416 | DOI:10.1016/j.jde.2016.01.031

Cité par 25 documents. Sources : Crossref