Let Ω be a domain in
Our main results deal with the case where
@article{AIHPC_2016__33_1_93_0, author = {Devyver, Baptiste and Pinchover, Yehuda}, title = {Optimal {\protect\emph{L}} \protect\textsuperscript{ \protect\emph{p} } {Hardy-type} inequalities}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {93--118}, publisher = {Elsevier}, volume = {33}, number = {1}, year = {2016}, doi = {10.1016/j.anihpc.2014.08.005}, mrnumber = {3436428}, zbl = {1331.35013}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2014.08.005/} }
TY - JOUR AU - Devyver, Baptiste AU - Pinchover, Yehuda TI - Optimal L p Hardy-type inequalities JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 93 EP - 118 VL - 33 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2014.08.005/ DO - 10.1016/j.anihpc.2014.08.005 LA - en ID - AIHPC_2016__33_1_93_0 ER -
%0 Journal Article %A Devyver, Baptiste %A Pinchover, Yehuda %T Optimal L p Hardy-type inequalities %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 93-118 %V 33 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2014.08.005/ %R 10.1016/j.anihpc.2014.08.005 %G en %F AIHPC_2016__33_1_93_0
Devyver, Baptiste; Pinchover, Yehuda. Optimal L p Hardy-type inequalities. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 93-118. doi : 10.1016/j.anihpc.2014.08.005. https://www.numdam.org/articles/10.1016/j.anihpc.2014.08.005/
[1] Role of the fundamental solution in Hardy–Sobolev-type inequalities, Proc. R. Soc. Edinb. A, Volume 136 (2006), pp. 1111–1130 | DOI | MR | Zbl
[2] A Picone's identity for the p-Laplacian and applications, Nonlinear Anal., Volume 32 (1998), pp. 819–830 | DOI | MR | Zbl
[3] Sard's theorem for mappings in Hölder and Sobolev spaces, Manuscr. Math., Volume 118 (2005), pp. 383–397 | DOI | MR | Zbl
[4] Gauss–Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws, Commun. Pure Appl. Math., Volume 62 (2009), pp. 242–304 | MR | Zbl
[5] Hardy inequalities on Riemannian manifolds and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014), pp. 449–475 | DOI | Numdam | MR | Zbl
[6] Optimal Hardy weight for second-order elliptic operator: an answer to a problem of Agmon, J. Funct. Anal., Volume 266 (2014), pp. 4422–4489 | DOI | MR | Zbl
[7] Explicit constants for Rellich inequalities in
[8] Isolated singularities of positive solutions of p-Laplacian type equations in
[9] Maximum and comparison principles for operators involving the p-Laplacian, J. Math. Anal. Appl., Volume 218 (1998), pp. 49–65 | DOI | MR | Zbl
[10] A variational problem for quasilinear elliptic equations with many independent variables, Sov. Math. Dokl., Volume 1 (1960), pp. 1390–1394 | MR | Zbl
[11] Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 342, Springer, Heidelberg, 2011 | MR | Zbl
[12] On criticality and ground states of second-order elliptic equations II, J. Differ. Equ., Volume 87 (1990), pp. 353–364 | DOI | MR | Zbl
[13] Ground state alternative for p-Laplacian with potential term, Calc. Var. Partial Differ. Equ., Volume 28 (2007), pp. 179–201 | MR | Zbl
[14] On the Hardy–Sobolev–Maz'ya inequality and its generalizations, Sobolev Spaces in Mathematics I: Sobolev Type Inequalities, International Mathematical Series, vol. 8, Springer, 2009, pp. 281–297 | DOI | MR | Zbl
[15] A Liouville-type theorem for the p-Laplacian with potential term, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008), pp. 357–368 | DOI | Numdam | MR | Zbl
[16] Uniqueness of positive solutions for singular problems involving the p-Laplacian, Proc. Am. Math. Soc., Volume 133 (2005), pp. 2549–2557 | DOI | MR | Zbl
[17] The Maximum Principle, Progress in Nonlinear Differential Equations and Their Applications, vol. 73, Birkhäuser Verlag, Basel, 2007 | MR | Zbl
[18] Local behavior of solutions of quasi-linear equations, Acta Math., Volume 111 (1964), pp. 247–302 | DOI | MR | Zbl
[19] Isolated singularities of solutions of quasi-linear equations, Acta Math., Volume 113 (1965), pp. 219–240 | DOI | MR | Zbl
[20] Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ., Volume 51 (1984), pp. 126–150 | DOI | MR | Zbl
- Harris’ Criterion and Hardy Inequalities on Graphs, Integral Equations and Operator Theory, Volume 97 (2025) no. 2 | DOI:10.1007/s00020-025-02794-x
- Sharp Hardy-type inequalities for non-compact harmonic manifolds and Damek–Ricci spaces, Israel Journal of Mathematics (2025) | DOI:10.1007/s11856-024-2713-y
- On the optimality and decay of p-Hardy weights on graphs, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 7 | DOI:10.1007/s00526-024-02754-0
- On fractional Hardy-type inequalities in general open sets, ESAIM: Control, Optimisation and Calculus of Variations, Volume 30 (2024), p. 77 | DOI:10.1051/cocv/2024066
- The space of Hardy-weights for quasilinear equations: Maz’ya-type characterization and sufficient conditions for existence of minimizers, Journal d'Analyse Mathématique, Volume 153 (2024) no. 1, p. 331 | DOI:10.1007/s11854-023-0318-8
- Multidimensional Frank–Laptev–Weidl improvement of the hardy inequality, Proceedings of the Edinburgh Mathematical Society, Volume 67 (2024) no. 1, p. 151 | DOI:10.1017/s0013091523000780
- Some Functional Properties on Cartan–Hadamard Manifolds of Very Negative Curvature, The Journal of Geometric Analysis, Volume 34 (2024) no. 4 | DOI:10.1007/s12220-023-01541-1
- A non-local quasi-linear ground state representation and criticality theory, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 5 | DOI:10.1007/s00526-023-02496-5
- An Improved Discrete p-Hardy Inequality, Integral Equations and Operator Theory, Volume 95 (2023) no. 4 | DOI:10.1007/s00020-023-02743-6
- Optimal Hardy Inequalities for Schrödinger Operators Based on Symmetric Stable Processes, Journal of Theoretical Probability, Volume 36 (2023) no. 1, p. 134 | DOI:10.1007/s10959-022-01164-2
- Optimal Hardy‐weights for elliptic operators with mixed boundary conditions, Mathematika, Volume 69 (2023) no. 4, p. 1221 | DOI:10.1112/mtk.12226
- Optimal Hardy-weights for the (p, A)-Laplacian with a potential term, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 153 (2023) no. 1, p. 289 | DOI:10.1017/prm.2021.85
- Hardy’s Identities and Inequalities on Cartan-Hadamard Manifolds, The Journal of Geometric Analysis, Volume 33 (2023) no. 1 | DOI:10.1007/s12220-022-01079-8
- LpHardy's identities and inequalities for Dunkl operators, Advanced Nonlinear Studies, Volume 22 (2022) no. 1, p. 416 | DOI:10.1515/ans-2022-0020
- SOME -HARDY AND -RELLICH TYPE INEQUALITIES WITH REMAINDER TERMS, Journal of the Australian Mathematical Society, Volume 113 (2022) no. 1, p. 79 | DOI:10.1017/s1446788721000100
- On minimal decay at infinity of Hardy-weights, Communications in Contemporary Mathematics, Volume 22 (2020) no. 05, p. 1950046 | DOI:10.1142/s0219199719500469
- On families of optimal Hardy-weights for linear second-order elliptic operators, Journal of Functional Analysis, Volume 278 (2020) no. 9, p. 108428 | DOI:10.1016/j.jfa.2019.108428
- Geometric Hardy's inequalities with general distance functions, Journal of Functional Analysis, Volume 279 (2020) no. 8, p. 108673 | DOI:10.1016/j.jfa.2020.108673
- On the generalized principal eigenvalue of quasilinear operator: definitions and qualitative properties, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 3 | DOI:10.1007/s00526-019-1523-2
- Hardy’s inequality in a limiting case on general bounded domains, Communications in Contemporary Mathematics, Volume 21 (2019) no. 08, p. 1850070 | DOI:10.1142/s0219199718500700
- Optimal Hardy inequalities for Schrödinger operators on graphs, Communications in Mathematical Physics, Volume 358 (2018) no. 2, p. 767 | DOI:10.1007/s00220-018-3107-y
- Equivalent and attained version of Hardy's inequality in Rn, Journal of Functional Analysis, Volume 275 (2018) no. 12, p. 3303 | DOI:10.1016/j.jfa.2018.09.008
- Dirichlet parabolicity and L1-Liouville property under localized geometric conditions, Journal of Functional Analysis, Volume 273 (2017) no. 2, p. 652 | DOI:10.1016/j.jfa.2017.03.016
- ImprovedLp-Poincaré inequalities on the hyperbolic space, Nonlinear Analysis, Volume 157 (2017), p. 146 | DOI:10.1016/j.na.2017.03.016
- Yamabe type equations with a sign-changing nonlinearity, and the prescribed curvature problem, Journal of Differential Equations, Volume 260 (2016) no. 10, p. 7416 | DOI:10.1016/j.jde.2016.01.031
Cité par 25 documents. Sources : Crossref