Let Ω be a domain in or a noncompact Riemannian manifold of dimension , and . Consider the functional defined on , and assume that . The aim of the paper is to generalize to the quasilinear case () some of the results obtained in [6] for the linear case (), and in particular, to obtain “as large as possible” nonnegative (optimal) Hardy-type weight W satisfying
Our main results deal with the case where , and Ω is a general punctured domain (for we obtain only some partial results). In the case , an optimal Hardy-weight is given by
@article{AIHPC_2016__33_1_93_0, author = {Devyver, Baptiste and Pinchover, Yehuda}, title = {Optimal {\protect\emph{L}} \protect\textsuperscript{ \protect\emph{p} } {Hardy-type} inequalities}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {93--118}, publisher = {Elsevier}, volume = {33}, number = {1}, year = {2016}, doi = {10.1016/j.anihpc.2014.08.005}, mrnumber = {3436428}, zbl = {1331.35013}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.08.005/} }
TY - JOUR AU - Devyver, Baptiste AU - Pinchover, Yehuda TI - Optimal L p Hardy-type inequalities JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 93 EP - 118 VL - 33 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2014.08.005/ DO - 10.1016/j.anihpc.2014.08.005 LA - en ID - AIHPC_2016__33_1_93_0 ER -
%0 Journal Article %A Devyver, Baptiste %A Pinchover, Yehuda %T Optimal L p Hardy-type inequalities %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 93-118 %V 33 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2014.08.005/ %R 10.1016/j.anihpc.2014.08.005 %G en %F AIHPC_2016__33_1_93_0
Devyver, Baptiste; Pinchover, Yehuda. Optimal L p Hardy-type inequalities. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 93-118. doi : 10.1016/j.anihpc.2014.08.005. http://www.numdam.org/articles/10.1016/j.anihpc.2014.08.005/
[1] Role of the fundamental solution in Hardy–Sobolev-type inequalities, Proc. R. Soc. Edinb. A, Volume 136 (2006), pp. 1111–1130 | DOI | MR | Zbl
[2] A Picone's identity for the p-Laplacian and applications, Nonlinear Anal., Volume 32 (1998), pp. 819–830 | DOI | MR | Zbl
[3] Sard's theorem for mappings in Hölder and Sobolev spaces, Manuscr. Math., Volume 118 (2005), pp. 383–397 | DOI | MR | Zbl
[4] Gauss–Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws, Commun. Pure Appl. Math., Volume 62 (2009), pp. 242–304 | MR | Zbl
[5] Hardy inequalities on Riemannian manifolds and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014), pp. 449–475 | DOI | Numdam | MR | Zbl
[6] Optimal Hardy weight for second-order elliptic operator: an answer to a problem of Agmon, J. Funct. Anal., Volume 266 (2014), pp. 4422–4489 | DOI | MR | Zbl
[7] Explicit constants for Rellich inequalities in , Math. Z., Volume 227 (1998), pp. 511–523 | DOI | MR | Zbl
[8] Isolated singularities of positive solutions of p-Laplacian type equations in , J. Differ. Equ., Volume 254 (2013), pp. 1097–1119 | DOI | MR | Zbl
[9] Maximum and comparison principles for operators involving the p-Laplacian, J. Math. Anal. Appl., Volume 218 (1998), pp. 49–65 | DOI | MR | Zbl
[10] A variational problem for quasilinear elliptic equations with many independent variables, Sov. Math. Dokl., Volume 1 (1960), pp. 1390–1394 | MR | Zbl
[11] Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 342, Springer, Heidelberg, 2011 | MR | Zbl
[12] On criticality and ground states of second-order elliptic equations II, J. Differ. Equ., Volume 87 (1990), pp. 353–364 | DOI | MR | Zbl
[13] Ground state alternative for p-Laplacian with potential term, Calc. Var. Partial Differ. Equ., Volume 28 (2007), pp. 179–201 | MR | Zbl
[14] On the Hardy–Sobolev–Maz'ya inequality and its generalizations, Sobolev Spaces in Mathematics I: Sobolev Type Inequalities, International Mathematical Series, vol. 8, Springer, 2009, pp. 281–297 | DOI | MR | Zbl
[15] A Liouville-type theorem for the p-Laplacian with potential term, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008), pp. 357–368 | DOI | Numdam | MR | Zbl
[16] Uniqueness of positive solutions for singular problems involving the p-Laplacian, Proc. Am. Math. Soc., Volume 133 (2005), pp. 2549–2557 | DOI | MR | Zbl
[17] The Maximum Principle, Progress in Nonlinear Differential Equations and Their Applications, vol. 73, Birkhäuser Verlag, Basel, 2007 | MR | Zbl
[18] Local behavior of solutions of quasi-linear equations, Acta Math., Volume 111 (1964), pp. 247–302 | DOI | MR | Zbl
[19] Isolated singularities of solutions of quasi-linear equations, Acta Math., Volume 113 (1965), pp. 219–240 | DOI | MR | Zbl
[20] Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ., Volume 51 (1984), pp. 126–150 | DOI | MR | Zbl
Cité par Sources :