A Liouville-type theorem for the p-laplacian with potential term
Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 2, pp. 357-368.
@article{AIHPC_2008__25_2_357_0,
     author = {Pinchover, Yehuda and Tertikas, Achilles and Tintarev, Kyril},
     title = {A {Liouville-type} theorem for the $p$-laplacian with potential term},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {357--368},
     publisher = {Elsevier},
     volume = {25},
     number = {2},
     year = {2008},
     doi = {10.1016/j.anihpc.2006.12.004},
     zbl = {1151.35027},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.12.004/}
}
TY  - JOUR
AU  - Pinchover, Yehuda
AU  - Tertikas, Achilles
AU  - Tintarev, Kyril
TI  - A Liouville-type theorem for the $p$-laplacian with potential term
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2008
SP  - 357
EP  - 368
VL  - 25
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2006.12.004/
DO  - 10.1016/j.anihpc.2006.12.004
LA  - en
ID  - AIHPC_2008__25_2_357_0
ER  - 
%0 Journal Article
%A Pinchover, Yehuda
%A Tertikas, Achilles
%A Tintarev, Kyril
%T A Liouville-type theorem for the $p$-laplacian with potential term
%J Annales de l'I.H.P. Analyse non linéaire
%D 2008
%P 357-368
%V 25
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2006.12.004/
%R 10.1016/j.anihpc.2006.12.004
%G en
%F AIHPC_2008__25_2_357_0
Pinchover, Yehuda; Tertikas, Achilles; Tintarev, Kyril. A Liouville-type theorem for the $p$-laplacian with potential term. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 2, pp. 357-368. doi : 10.1016/j.anihpc.2006.12.004. http://www.numdam.org/articles/10.1016/j.anihpc.2006.12.004/

[1] Agmon S., Bounds on exponential decay of eigenfunctions of Schrödinger operators, in: Schrödinger Operators, Como, 1984, Lecture Notes in Math., vol. 159, Springer, Berlin, 1985, pp. 1-38. | MR | Zbl

[2] Allegretto W., Huang Y.X., A Picone's identity for the p-Laplacian and applications, Nonlinear Anal. 32 (1998) 819-830. | MR | Zbl

[3] Allegretto W., Huang Y.X., Principal eigenvalues and Sturm comparison via Picone's identity, J. Differential Equations 156 (1999) 427-438. | MR | Zbl

[4] Barbatis G., Filippas S., Tertikas A., A unified approach to improved L p Hardy inequalities with best constants, Trans. Amer. Math. Soc. 356 (2004) 2169-2196. | MR | Zbl

[5] Diaz J.I., Saá J.E., Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Ser. I Math. 305 (1987) 521-524. | MR | Zbl

[6] Heinonen J., Kilpeläinen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Oxford University Press, New York, 1993. | MR | Zbl

[7] Mitidieri A., Pokhozhaev S.I., Some generalizations of Bernstein's theorem, Differ. Uravn. 38 (2002) 373-378, Translation in Differ. Equ. 38 (2002) 392-397. | MR

[8] Murata M., Structure of positive solutions to (-Δ+V)u=0 in R n , Duke Math. J. 53 (1986) 869-943. | MR | Zbl

[9] Pinchover Y., A Liouville-type theorem for Schrödinger operators, Comm. Math. Phys. 272 (2007) 75-84. | MR | Zbl

[10] Pinchover Y., Tintarev K., Ground state alternative for p-Laplacian with potential term, Calc. Var. Partial Differential Equations 28 (2007) 179-201. | MR

[11] Poliakovsky A., Shafrir I., Uniqueness of positive solutions for singular problems involving the p-Laplacian, Proc. Amer. Math. Soc. 133 (2005) 2549-2557. | MR | Zbl

[12] Serrin J., Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964) 247-302. | MR | Zbl

[13] Serrin J., Isolated singularities of solutions of quasi-linear equations, Acta Math. 113 (1965) 219-240. | MR | Zbl

[14] Shafrir I., Asymptotic behaviour of minimizing sequences for Hardy's inequality, Commun. Contemp. Math. 2 (2000) 151-189. | MR | Zbl

[15] Tolksdorf P., Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984) 126-150. | MR | Zbl

Cité par Sources :