@article{AIHPC_2008__25_2_357_0, author = {Pinchover, Yehuda and Tertikas, Achilles and Tintarev, Kyril}, title = {A {Liouville-type} theorem for the $p$-laplacian with potential term}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {357--368}, publisher = {Elsevier}, volume = {25}, number = {2}, year = {2008}, doi = {10.1016/j.anihpc.2006.12.004}, zbl = {1151.35027}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.12.004/} }
TY - JOUR AU - Pinchover, Yehuda AU - Tertikas, Achilles AU - Tintarev, Kyril TI - A Liouville-type theorem for the $p$-laplacian with potential term JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 357 EP - 368 VL - 25 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.12.004/ DO - 10.1016/j.anihpc.2006.12.004 LA - en ID - AIHPC_2008__25_2_357_0 ER -
%0 Journal Article %A Pinchover, Yehuda %A Tertikas, Achilles %A Tintarev, Kyril %T A Liouville-type theorem for the $p$-laplacian with potential term %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 357-368 %V 25 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.12.004/ %R 10.1016/j.anihpc.2006.12.004 %G en %F AIHPC_2008__25_2_357_0
Pinchover, Yehuda; Tertikas, Achilles; Tintarev, Kyril. A Liouville-type theorem for the $p$-laplacian with potential term. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 2, pp. 357-368. doi : 10.1016/j.anihpc.2006.12.004. http://www.numdam.org/articles/10.1016/j.anihpc.2006.12.004/
[1] Bounds on exponential decay of eigenfunctions of Schrödinger operators, in: Schrödinger Operators, Como, 1984, Lecture Notes in Math., vol. 159, Springer, Berlin, 1985, pp. 1-38. | MR | Zbl
,[2] A Picone's identity for the p-Laplacian and applications, Nonlinear Anal. 32 (1998) 819-830. | MR | Zbl
, ,[3] Principal eigenvalues and Sturm comparison via Picone's identity, J. Differential Equations 156 (1999) 427-438. | MR | Zbl
, ,[4] A unified approach to improved Hardy inequalities with best constants, Trans. Amer. Math. Soc. 356 (2004) 2169-2196. | MR | Zbl
, , ,[5] Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Ser. I Math. 305 (1987) 521-524. | MR | Zbl
, ,[6] Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Oxford University Press, New York, 1993. | MR | Zbl
, , ,[7] Some generalizations of Bernstein's theorem, Differ. Uravn. 38 (2002) 373-378, Translation in Differ. Equ. 38 (2002) 392-397. | MR
, ,[8] Structure of positive solutions to in , Duke Math. J. 53 (1986) 869-943. | MR | Zbl
,[9] A Liouville-type theorem for Schrödinger operators, Comm. Math. Phys. 272 (2007) 75-84. | MR | Zbl
,[10] Ground state alternative for p-Laplacian with potential term, Calc. Var. Partial Differential Equations 28 (2007) 179-201. | MR
, ,[11] Uniqueness of positive solutions for singular problems involving the p-Laplacian, Proc. Amer. Math. Soc. 133 (2005) 2549-2557. | MR | Zbl
, ,[12] Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964) 247-302. | MR | Zbl
,[13] Isolated singularities of solutions of quasi-linear equations, Acta Math. 113 (1965) 219-240. | MR | Zbl
,[14] Asymptotic behaviour of minimizing sequences for Hardy's inequality, Commun. Contemp. Math. 2 (2000) 151-189. | MR | Zbl
,[15] Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984) 126-150. | MR | Zbl
,Cité par Sources :