We give a positive answer to a question raised by Alberti in connection with a recent result by Brezis and Nguyen. We show the existence of currents associated with graphs of maps in trace spaces that have vanishing mean oscillation. The degree of such maps may be written in terms of these currents, of which we give some structure properties. We also deal with relevant examples.
@article{AIHPC_2014__31_5_1015_0, author = {Acerbi, Emilio and Mucci, Domenico}, title = {Graphs of maps between manifolds in trace spaces and with vanishing mean oscillation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1015--1034}, publisher = {Elsevier}, volume = {31}, number = {5}, year = {2014}, doi = {10.1016/j.anihpc.2013.07.010}, mrnumber = {3258364}, zbl = {1311.46027}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.07.010/} }
TY - JOUR AU - Acerbi, Emilio AU - Mucci, Domenico TI - Graphs of maps between manifolds in trace spaces and with vanishing mean oscillation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 1015 EP - 1034 VL - 31 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2013.07.010/ DO - 10.1016/j.anihpc.2013.07.010 LA - en ID - AIHPC_2014__31_5_1015_0 ER -
%0 Journal Article %A Acerbi, Emilio %A Mucci, Domenico %T Graphs of maps between manifolds in trace spaces and with vanishing mean oscillation %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 1015-1034 %V 31 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2013.07.010/ %R 10.1016/j.anihpc.2013.07.010 %G en %F AIHPC_2014__31_5_1015_0
Acerbi, Emilio; Mucci, Domenico. Graphs of maps between manifolds in trace spaces and with vanishing mean oscillation. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 5, pp. 1015-1034. doi : 10.1016/j.anihpc.2013.07.010. http://www.numdam.org/articles/10.1016/j.anihpc.2013.07.010/
[1] Sobolev Spaces, Academic Press, New York (1975) | MR | Zbl
,[2] G. Alberti, Review of the paper [7]: “On the distributional Jacobian of maps from into in fractional Sobolev and Hölder spaces”, Mathematical Reviews 2776373, 2012d:46080.
[3] Structure of level sets and Sard-type properties of Lipschitz maps, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (2013), http://dx.doi.org/10.2422/2036-2145.201107_006, to appear. | Numdam | MR | Zbl
, , ,[4] On the differentiability of certain classes of functions, Rev. Mat. Iberoam. (2013) | MR
, , ,[5] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monographs , Oxford University Press, Oxford (2000) | MR | Zbl
, , ,[6] Extensions for Sobolev mappings between manifolds, Calc. Var. 3 (1995), 475 -491 | MR | Zbl
, ,[7] On the distributional Jacobian of maps from into in fractional Sobolev and Hölder spaces, Ann. Math. (2) 173 (2011), 1141 -1183 | MR | Zbl
, ,[8] Degree theory and BMO; Part I: compact manifolds without boundaries, Sel. Math. New Ser. 1 (1995), 197 -263 | MR | Zbl
, ,[9] Degree theory and BMO; Part II: compact manifolds with boundaries, Sel. Math. New Ser. 2 (1996), 309 -368 | MR | Zbl
, ,[10] Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974), 351 -407 | MR | Zbl
,[11] Caratterizzazione delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Semin. Mat. Univ. Padova 27 (1957), 284 -305 | EuDML | Numdam | MR | Zbl
,[12] Cartesian Currents in the Calculus of Variations, vol. I: Cartesian Currents, Ergeb. Math. Grenzgeb. (III Ser.) vol. 37 , Springer, Berlin (1998) | MR | Zbl
, , ,[13] The homological singularities of maps in trace spaces between manifolds, Math. Z. 266 (2010), 817 -849 | MR | Zbl
,[14] On the singular support of the distributional determinant, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 10 (1993), 657 -696 | EuDML | Numdam | MR | Zbl
,[15] Functions with vanishing mean oscillation, Trans. Am. Math. Soc. 207 (1975), 391 -405 | MR
,[16] Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom. 18 (1983), 253 -268 | MR | Zbl
, ,Cité par Sources :