We consider certain properties of maps of class from to that are strictly related to Sard’s theorem, and we show that some of them can be extended to Lipschitz maps, while others require some additional regularity. We also give examples showing that, in terms of regularity, our results are optimal.
@article{ASNSP_2013_5_12_4_863_0, author = {Alberti, Giovanni and Bianchini, Stefano and Crippa, Gianluca}, title = {Structure of level sets and {Sard-type} properties of {Lipschitz} maps}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {863--902}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {4}, year = {2013}, mrnumber = {3184572}, zbl = {1295.26016}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2013_5_12_4_863_0/} }
TY - JOUR AU - Alberti, Giovanni AU - Bianchini, Stefano AU - Crippa, Gianluca TI - Structure of level sets and Sard-type properties of Lipschitz maps JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 863 EP - 902 VL - 12 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2013_5_12_4_863_0/ LA - en ID - ASNSP_2013_5_12_4_863_0 ER -
%0 Journal Article %A Alberti, Giovanni %A Bianchini, Stefano %A Crippa, Gianluca %T Structure of level sets and Sard-type properties of Lipschitz maps %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 863-902 %V 12 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2013_5_12_4_863_0/ %G en %F ASNSP_2013_5_12_4_863_0
Alberti, Giovanni; Bianchini, Stefano; Crippa, Gianluca. Structure of level sets and Sard-type properties of Lipschitz maps. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 4, pp. 863-902. http://www.numdam.org/item/ASNSP_2013_5_12_4_863_0/
[1] G. Alberti, S. Bianchini and G. Crippa, A uniqueness result for the continuity equation in two dimensions, J. Eur. Math. Soc. (JEMS), to appear. Available at http/cvgmt.sns.it/ | EuDML | MR | Zbl
[2] S. M. Bates, Toward a precise smoothness hypothesis in Sard’s theorem, Proc. Amer. Math. Soc. 117 (1993), 279–283. | MR | Zbl
[3] B. Bojarski, P. Hajłasz and P. Strzelecki, Sard’s theorem for mappings in Hölder and Sobolev spaces, Manuscripta Math. 118 (2005), 383–397. | MR | Zbl
[4] J. Bourgain, M. V. Korobkov and J. Kristensen, On the Morse-Sard property and level sets of Sobolev and functions, Rev. Mat. Iberoam. 29 (2013), 1–23. | MR | Zbl
[5] L. De Pascale, The Morse-Sard theorem in Sobolev spaces, Indiana Univ. Math. J. 50 (2001), 1371–1386. | MR | Zbl
[6] A.Ya. Dubovickiĭ, On the structure of level sets of differentiable mappings of an -dimensional cube into a -dimensional cube (Russian), Izv. Akad. Nauk SSSR. Ser. Mat. 21 (1957), 371–408. | MR | Zbl
[7] R. Engelking, “General Topology”, revised and completed edition, Sigma Series in Pure Mathematics, Vol. 6, Heldermann Verlag, Berlin, 1989. | MR | Zbl
[8] K. J. Falconer, “The Geometry of Fractal Sets”, Cambridge Tracts in Mathematics, Vol. 85, Cambridge University Press, Cambridge, 1985. | MR | Zbl
[9] H. Federer, “Geometric Measure Theory”, Grundlehren der mathematischen Wissenschaften, Vol. 153, Springer, Berlin-New York 1969; reprinted in the series Classics in Mathematics, Springer, Berlin-Heidelberg, 1996. | MR | Zbl
[10] A. Figalli, A simple proof of the Morse-Sard theorem in Sobolev spaces, Proc. Amer. Math. Soc. 136 (2008), 3675–3681. | MR | Zbl
[11] E. L. Grinberg, On the smoothness hypothesis in Sard’s theorem, Amer. Math. Monthly 92 (1985), 733–734. | MR | Zbl
[12] M. W. Hirsch, “Differential Topology”, corrected reprint of the 1976 original, Graduate Texts in Mathematics, Vol. 33, Springer-Verlag, New York, 1976. | MR | Zbl
[13] S. V. Konyagin, On the level sets of Lipschitz functions, Tatra Mt. Math. Publ. 2 (1993), 51–59. | MR | Zbl
[14] S. G. Krantz and H. R. Parks, “Geometric Integration Theory”, Cornerstones, Birkhäuser, Boston, 2008. | MR | Zbl
[15] R. L. Moore, Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci. U.S.A. 14 (1928), 85–88. | JFM | MR
[16] H. P. Mulholland, On the total variation of a function of two variables, Proc. London Math. Soc. (2) 46 (1940), 290-311. | JFM | MR
[17] A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883–890. | MR | Zbl
[18] L. Simon, “Lectures on Geometric Measure Theory”, Proceedings of the Centre for Mathematical Analysis, Vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra 1983. | MR | Zbl
[19] H. Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), 514–517. | JFM | MR