@article{AIHPC_2008__25_6_1187_0, author = {Bonetti, Elena and Bonfanti, Giovanna}, title = {Well-posedness results for a model of damage in thermoviscoelastic materials}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1187--1208}, publisher = {Elsevier}, volume = {25}, number = {6}, year = {2008}, doi = {10.1016/j.anihpc.2007.05.009}, mrnumber = {2466326}, zbl = {1152.35505}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2007.05.009/} }
TY - JOUR AU - Bonetti, Elena AU - Bonfanti, Giovanna TI - Well-posedness results for a model of damage in thermoviscoelastic materials JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 1187 EP - 1208 VL - 25 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2007.05.009/ DO - 10.1016/j.anihpc.2007.05.009 LA - en ID - AIHPC_2008__25_6_1187_0 ER -
%0 Journal Article %A Bonetti, Elena %A Bonfanti, Giovanna %T Well-posedness results for a model of damage in thermoviscoelastic materials %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 1187-1208 %V 25 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2007.05.009/ %R 10.1016/j.anihpc.2007.05.009 %G en %F AIHPC_2008__25_6_1187_0
Bonetti, Elena; Bonfanti, Giovanna. Well-posedness results for a model of damage in thermoviscoelastic materials. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 6, pp. 1187-1208. doi : 10.1016/j.anihpc.2007.05.009. http://www.numdam.org/articles/10.1016/j.anihpc.2007.05.009/
[1] Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert, Ann. Mat. Pura Appl. (IV) 76 (1967) 233-304. | MR | Zbl
,[2] Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. | MR | Zbl
,[3] Existence and uniqueness of the solution to a 3D thermoviscoelastic system, Electron. J. Differential Equations 50 (2003) 1-15. | MR | Zbl
, ,[4] Local existence to Frémond's model for damaging in elastic materials, Contin. Mech. Thermodyn. 16 (2004) 319-335. | MR | Zbl
, ,[5] On a doubly nonlinear model for the evolution of damaging in viscoelastic materials, J. Differential Equations 218 (2005) 91-116. | MR | Zbl
, , ,[6] Global solution to a nonlinear system for irreversible phase changes, Adv. Math. Sci. Appl. 10 (2000) 1-24. | MR | Zbl
, , ,[7] Existence and uniqueness results to a phase transition model based on microscopic accelerations and movements, Nonlinear Anal. Real World Appl. 5 (2004) 123-140. | MR | Zbl
, , ,[8] Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Math. Studies, vol. 5, North-Holland, Amsterdam, 1973. | MR | Zbl
,[9] Global smooth solutions to the initial boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal. 13 (1982) 397-408. | MR | Zbl
,[10] Homogenization and mechanical dissipation in thermoviscoelasticity, Arch. Ration. Mech. Anal. 96 (1986) 265-293. | MR | Zbl
, ,[11] Non-smooth Thermomechanics, Springer-Verlag, Berlin, 2001. | MR | Zbl
,[12] Damage problems for viscous locking materials, Adv. Math. Sci. Appl. 16 (2006) 697-716. | MR | Zbl
, ,[13] One dimensional models of damage, Adv. Math. Sci. Appl. 8 (1998) 541-570. | MR | Zbl
, , , ,[14] Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. | MR | Zbl
,[15] Global solution to a phase field model with irreversible and constrained phase evolution, Quart. Appl. Math. 60 (2002) 301-316. | MR | Zbl
, , ,[16] On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959) 115-162. | Numdam | MR | Zbl
,[17] Su un'equazione non lineare della corda vibrante, Ann. Mat. Pura Appl. 161 (1992) 1-42. | MR | Zbl
, ,[18] Positivity of the temperature for phase transitions with micro-movements, Nonlinear Anal. Real World Appl. 8 (2007) 257-266. | MR | Zbl
, ,[19] Compact sets in the space , Ann. Mat. Pura Appl. (4) 146 (1987) 65-96. | MR | Zbl
,Cité par Sources :