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Abstract

This paper deals with a phase transitions model describing the evolution of damage in thermoviscoelastic materials. The resulting
system is highly non-linear, mainly due to the presence of quadratic dissipative terms and non-smooth constraints on the variables.
Existence and uniqueness of a solution are proved, as well as regularity results, on a suitable finite time interval.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This paper deals with the phenomenon of damage in thermoviscoelastic materials. It is known that a material loses
its stiffness during the damage process. Consequently, deformations become uncontrolled and the material breaks.
In the last years, Frémond has proposed a macroscopic model describing the damaging process in continuous media
using the phase transitions approach and accounting for microscopic movements [11]. In particular, a phase parameter
χ characterizes the state of damage of the material. More precisely, the phase parameter χ satisfies the constraint

χ ∈ [0,1], (1.1)

where χ = 1 and χ = 0 correspond to the undamaged and completely damaged material, respectively. In an intermedi-
ate situation it is χ ∈ (0,1). The resulting isothermal model consists into two partial differential equations describing
the evolution of the phase parameter and of the deformations. Some analytical results have been obtained both in the
one-dimensional setting and in the three-dimensional case [13,4,5]. However, all these results are local in time, as the
existence of a solution is proved still the damaging process is not complete. This is mainly due to the degeneracy of
the stiffness of the material during the process leading uncontrolled deformations. To overcome this difficulty, our idea
is to include some constitutive relation in the model characterizing the behaviour of the material once it is completely
damaged in some region. In a recent contribution [12] the authors introduce a model in which it is prescribed as a
constraint an uniform bound for the deformations velocity. In the present paper, we propose a model in which it is
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required that when the material is completely damaged some viscosity effects remain (cf. also [5]). In particular, we
are able to control deformations when the damaging process is completed in some region of the body, even if the
model itself does not ensure any a priori bound on the deformations velocity. Hence, dealing with viscoelastic mate-
rials (cf., e.g., [9,10]), it turns out to be interesting to extend the damage Frémond model to non-isothermal situations
accounting for thermal effects. Thus, a novelty of the present contribution, with respect to the others in the literature
concerning the Frémond model for damage, is the fact that we take thermal effects into account and, consequently, we
introduce an energy balance equation in the resulting system.

Now, let us briefly describe the derivation of the model (see also [3]). We consider a thermoviscoelastic material
located in a bounded smooth domain Ω ⊂ R3, with boundary Γ := ∂Ω , and investigate the damage evolution during
a finite time interval (0, T ). We use the notation Q := Ω × (0, T ), and Qt = Ω × (0, t), with t ∈ (0, T ). Let us
fix as state variables of our model the absolute temperature θ , the symmetric strain tensor ε(u) (u stands for the
vector of small displacements), the phase parameter χ related to the quantity of damaged material, and the gradient
of damage ∇χ , accounting for local interactions. Then, we specify the free energy Ψ as follows

Ψ
(
θ,χ,∇χ, ε(u)

) = −csθ log θ + 1

2
χε(u)Kε(u) + w(1 − χ) + ν

2
|∇χ |2 + α(θ)χ tr ε(u) + I[0,1](χ). (1.2)

The indicator function I[0,1] accounts for the constraint (1.1) on the phase parameter, as it is I[0,1](χ) = 0 if χ ∈ [0,1]
and I[0,1](χ) = +∞ otherwise. The term α(θ)χ , acting when the material is not completely damaged, represents a
thermal expansion coefficient, while K stands for the stiffness matrix. As it is natural, the energy terms associated to
deformations disappear once the material is completely damaged, i.e. when χ = 0. Moreover, cs > 0 denotes the heat
capacity of the system, w > 0 is related to the cohesion energy of the material (which is considered independent of χ ),
and ν is a positive constant. On a second step, we introduce a pseudo-potential of dissipation Φ depending on suitable
dissipative variables, describing the evolution of the thermomechanical system. We consider as dissipative variables
the macroscopic velocities ε(ut ), the gradient of the temperature ∇θ related to the heat flux, and the time derivatives
χt and ∇χt related to the microscopic velocities (see [11]).

Φ
(∇θ,χt ,∇χt , ε(ut )

) = μ

2
|χt |2 + η

2
|∇χt |2 + δ

2
ε(ut )Sε(ut ) + λ

2θ
|∇θ |2 + I(−∞,0](χt ), (1.3)

where μ,η, δ and λ are positive constants, and S is a symmetric and positive definite matrix. The indicator function
I(−∞,0](χt ) represents a constraint on the sign of χt , which is forced to be non-positive. Indeed, I(−∞,0](χt ) = 0
if χt � 0, while I(−∞,0](χt ) = +∞ otherwise. This corresponds to describe an irreversible damaging process as χ

cannot increase, i.e. the material cannot repair itself once it is damaged (cf., e.g., [4] and [6]). Hence, before writing
the universal balance laws of continuum thermomechanics, i.e., the energy balance and the momentum balance, we
specify the constitutive relations for the involved physical quantities. They are derived by Ψ and Φ , in accordance
with the second principle of thermodynamics.

The entropy s is given by

s = −∂Ψ

∂θ
= cs(log θ + 1) − α′(θ)χ tr ε(u), (1.4)

and the internal energy e is

e = Ψ + θs. (1.5)

The heat flux q is assumed to be governed by the Fourier law. We derive it by the pseudo-potential of dissipation
introducing the dissipative vector

Qd = − ∂Φ

∂∇θ

related to q by q = θQd . Thus, we recover

q = −λ∇θ. (1.6)

Then, we introduce the stress tensor σ which is supposed to be the sum of non-dissipative and dissipative contributions

σ = σnd + σd = ∂Ψ + ∂Φ = χKε(u) + α(θ)χ1 + δSε(ut ) (1.7)

∂ε(u) ∂ε(ut )
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(1 denotes the identity matrix) and two internal microscopic forces given by the sum of non-dissipative and dissipative
components as well

B = Bnd + Bd = ∂Ψ

∂χ
+ ∂Φ

∂χt

, (1.8)

H = Hnd + Hd = ∂Ψ

∂∇χ
+ ∂Φ

∂∇χt

. (1.9)

In particular, we have

B = 1

2
ε(u)Kε(u) − w + α(θ)div u + ∂I[0,1](χ) + μχt + ∂I(−∞,0](χt ), (1.10)

and

H = ν∇χ + η∇χt . (1.11)

We recall that ∂I[0,1] is the subdifferential of the indicator function I[0,1] and it is defined for χ ∈ [0,1] by:
∂I[0,1](χ) = 0 if χ ∈ (0,1), ∂I[0,1](0) = (−∞,0], and ∂I[0,1](1) = [0,+∞). Analogously, we have ∂I(−∞,0](χt ) = 0
if χt < 0, while ∂I(−∞,0](0) = [0,+∞).

Now, we write the balance laws of continuum thermomechanics. The energy balance equation reads

et + div q = r + σε(ut ) + Bχt + H · ∇χt . (1.12)

Note on the right-hand side of (1.12) the heat source r and the mechanically induced heat sources, which are related
to macroscopic and microscopic stresses. In the sequel, for the sake of simplicity, we let r = 0. In the approach
by Frémond [11], (1.12) is derived through a generalization of the principle of virtual power including microscopic
movements responsible for the phase transition, i.e. in this case the damaging process. Then, the classical momentum
balance is written accounting also for macroscopic accelerations and assuming that no external volume forces act on
the body

ut t − divσ = 0. (1.13)

Analogously, it is recovered a microscopic balance equation accounting for microscopic accelerations (see [7])

χtt + B − div H = 0. (1.14)

The above equations (1.12), (1.13), and (1.14) are completed by suitable boundary conditions. We let (here n is the
outward normal unit vector to the boundary)

q · n = 0 in Γ × (0, T ), (1.15)

H · n = 0 in Γ × (0, T ), (1.16)

u = 0 in Γ × (0, T ). (1.17)

Now, we substitute in (1.12)–(1.14), (1.15)–(1.17) the constitutive relations written in terms of Ψ and Φ . Applying
the chain rule, we get in Ω × (0, T )(

cs − θα′′(θ)χ div u
)
θt − λ�θ − α′(θ)θ(χt div u + χ div ut ) = μ|χt |2 + η|∇χt |2 + δSε(ut )ε(ut ), (1.18)

ut t − div
(
χKε(u) + α(θ)χ1 + δSε(ut )

) = 0, (1.19)

χtt + μχt − η�χt − ν�χ + ∂I[0,1](χ) + ∂I(−∞,0](χt ) � w − 1

2
ε(u)Kε(u) − α(θ)div u (1.20)

and in Γ × (0, T )

∂nθ = 0, ∂nχ = ∂nχt = 0, u = 0. (1.21)

Then, we fix initial assumptions (holding in Ω)

θ(0) = θ0, (1.22)

χ(0) = χ0 ∈ (0,1], χt (0) = χ1, (1.23)

u(0) = u0, ut (0) = u1. (1.24)
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Remark 1.1. Let us discuss the thermodynamical consistence of the model. Explicitly writing (1.12), accounting for
the prescribed constitutive relations (1.6)–(1.9), by the chain rule we have

θ

(
st + div Qq − r

θ

)
= Bdχt + Hd · ∇χt + σdε(ut ) − Qd · ∇θ

= ∂Φ
(∇θ,χt ,∇χt , ε(ut )

) · (∇θ,χt ,∇χt , ε(ut )
)
� 0, (1.25)

where ∂Φ denotes the subdifferential of Φ with respect to the dissipative variables (∇θ,χt ,∇χt , ε(ut )). Now, Φ is a
convex, non-negative function, attaining its minimum 0 for (∇θ,χt ,∇χt , ε(ut )) = (0,0,0,0). Thus, its subdifferential
is a maximal monotone graph with (0,0,0,0) ∈ ∂Φ(0,0,0,0), from which the inequality in (1.25) easily follows.
Hence, as the absolute temperature is θ > 0, (1.25) yields the Clausius–Duhem inequality

st + div Qd − r

θ
� 0.

Now, concerning the doubly non-linear character of (1.20), we actually observe that if χt � 0 and, e.g., χ0 = 1, we
have for any solution χ � 1 a.e. in Q. Thus, if the solution χ is sufficiently regular, we can deduce that there exists
t̂ ∈ (0, T ] such that χ ∈ [0,1] a.e. in Qt̂ just proving that χ � 0. Indeed (see [4]), provided the solution χ is smooth
enough, we have

χ(t) − 1 = χ0 − 1 +
t∫

0

χt (s) ds

from which it follows

‖χ − 1‖L∞(Qt ) �
t∫

0

‖χt‖L∞(Ω) � cΩt1/2‖χt‖L2(0,T ;H 2(Ω)), (1.26)

with cΩ denoting the embedding constant of H 2(Ω) into L∞(Ω) (in the three-dimensional case). Thus, to prove that

‖χ − 1‖L∞(Qt ) � 1, (1.27)

it is sufficient to bound, e.g., χt in L2(0, T ;H 2(Ω)) and choose t sufficiently small in (1.26). In particular, restricting
our analysis to a suitable time interval (0, t̂ ), we are allowed to omit the constraint on χ in (1.20) and deal directly
with the differential inclusion

χtt + μχt − η�χt − ν�χ + ∂I(−∞,0](χt ) � w − 1

2
ε(u)Kε(u) − α(θ)div u. (1.28)

By using a fixed point argument combined with an a priori estimates and passage to the limit technique we are able to
prove that there exists a solution to our initial and boundary value problem in a suitable time interval (Theorem 2.1).
Then, uniqueness follows by contracting estimates. Finally, further regularity results are established under suitable
assumptions on the data of the problem (Theorem 2.2). Let us remark that the local character of our results is essen-
tially related to the presence of highly non-linear terms in the resulting system (see also [3] and [7]). In Section 2
we derive the variational formulation of the problem and state the main results. Section 3 is devoted to the proof of
the existence result. In particular, it is proved the positivity of the temperature which is a crucial point in showing the
thermodynamic consistency of the model (cf. Remark 1.1). The uniqueness result is detailed in Section 4. Finally, in
Section 5, we get additional regularity on the solution.

2. Analytical formulation and main results

In this section, we present the analytical problem we are going to solve, which is recovered by (1.18)–(1.19),
(1.28) and (1.21), (1.22)–(1.24). We make some simplification. In particular, we consider u as a scalar quantity u (so
that ∇u stands for deformation) and let α(θ) = αθ , with α ∈ R and a = (α,α,α). The physical constants are taken
cs = ν = λ = μ = α = δ = η = 1. The stiffness matrix K and the viscosity matrix S are assumed equal to the identity
matrix. Hence, we introduce the Hilbert triplet V ↪→ H ↪→ V ′, with H := L2(Ω) identified as usual with its dual
space, and V := H 1(Ω). Moreover, we denote by (·,·) the scalar product in H and by X′ 〈·,·〉X the duality pairing
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between the space X and its topological dual X′. Then, the associated Riesz isomorphism J :V → V ′ is related to the
scalar product in V ((·,·)) and in V ′ ((·,·))∗ as follows

V ′ 〈Jv1, v2〉V := ((v1, v2)), ((u1, u2))∗ := V ′
〈
u1, J

−1u2
〉
V
, (2.1)

for vi ∈ V , ui ∈ V ′, i = 1,2. In addition, we set V0 = H 1
0 (Ω) and W = {v ∈ H 2(Ω): ∂nv = 0 on Γ }. We denote by

‖ · ‖X both the norm in a Banach space X and in some power of it Xp .
We aim to investigate the following PDE’s system

θt − �θ = θχa · ∇ut + θχta · ∇u + |χt |2 + |∇χt |2 + |∇ut |2, (2.2)

χtt + χt − �χt − �χ + ∂I(−∞,0](χt ) � w − 1

2
|∇u|2 − θa · ∇u, (2.3)

utt − div(∇ut + χ∇u + θχa) = 0, (2.4)

combined with the initial and boundary conditions expressed by (1.21) and (1.22)–(1.24). Hence, to simplify notation,
we introduce the operator β

β(χt ) := (Id+∂I(−∞,0])(χt ). (2.5)

However, let us point out that our results can be applied to a fairly general maximal monotone operator not necessarily
coercive (see (2.9)–(2.10) below).

Actually, we address the above system in the duality between V ′ and V for (2.2)–(2.3) and between V ′
0 and V0

for (2.4). In particular, in this abstract framework, we have to specify the meaning of the operators −� and −div in
Eqs. (2.2)–(2.3) and (2.4). More precisely, in (2.2)–(2.3) the operator −� stands for the realization of the Laplace
operator with homogeneous Neumann boundary conditions

−� :V → V ′, V ′ 〈−�u,v〉V =
∫
Ω

∇u · ∇v ∀u,v ∈ V,

while −div in (2.4) is defined by

−div :H 3 → V ′
0, V ′

0
〈−div v, u〉V0 =

∫
Ω

v · ∇u ∀v ∈ H 3, ∀u ∈ V0.

Let us observe that if u and χ belong to H 2(Ω) (this assumption could be relaxed), then there holds (here −� is the
Laplace operator)

−div(χ∇u) ∈ H and − div(χ∇u) = −χ�u − ∇χ · ∇u.

This fact can be proved by means of an approximation-density procedure. Thus, in such a regularity framework,
the term −div(χ∇v) makes sense in H , hence almost everywhere in Ω . Analogously, also the term −�v can be
understood as an L2-function once we have v ∈ H 2(Ω).

Now, concerning the Cauchy conditions (1.22)–(1.24), we assume the following hypotheses

θ0 ∈ H, θ0 > 0 a.e. in Ω, θ−1
0 ∈ L1(Ω), (2.6)

χ0 ∈ W, χ1 ∈ V, (2.7)

u0 ∈ H 2(Ω) ∩ V0, u1 ∈ V0. (2.8)

Moreover, we suppose that

β : R → 2R is a maximal monotone operator, with 0 ∈ β(0) and domβ ⊆ (−∞,0]. (2.9)

Standard convex analysis results (see, e.g., [2]) ensure that there exists a functional

β̂ : R → [0,+∞] proper, convex, lower semicontinuous, with β = ∂β̂ and β̂(0) = 0 = min β̂. (2.10)

Then, we can state the main result of the paper.
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Theorem 2.1. Let the assumptions (2.6)–(2.10) hold. Then, there exist τ ∈ (0, T ] and a unique quadruple of functions
(θ,χ,u, ξ) with regularity

θ ∈ H 1(0, τ ;V ′) ∩ C0([0, τ ];H ) ∩ L2(0, τ ;V ), (2.11)

θ−1 ∈ L∞(
0, τ ;L1(Ω)

)
, (2.12)

χ ∈ H 2(0, τ ;H) ∩ W 1,∞(0, τ ;V ) ∩ H 1(0, τ ;W), (2.13)

u ∈ H 2(0, τ,H) ∩ W 1,∞(0, τ ;V0) ∩ H 1(0, τ ;H 2(Ω)
)
, (2.14)

ξ ∈ L2(0, τ ;H), (2.15)

fulfilling (1.22)–(1.24) and

〈θt , v〉 + (∇θ,∇v) = (
θχa · ∇ut + θχta · ∇u + |χt |2 + |∇χt |2 + |∇ut |2, v

) ∀v ∈ V a.e. in (0, τ ), (2.16)

χtt − �χt − �χ + ξ = w − 1

2
|∇u|2 − θa · ∇u a.e. in Qτ , (2.17)

ξ ∈ β(χt ) a.e. in Qτ , (2.18)

utt − �ut − div(χ∇u + θχa) = 0 a.e. in Qτ , (2.19)

and such that

χ ∈ [0,1] a.e. in Qτ , (2.20)

θ > 0 a.e. in Qτ . (2.21)

Now, by strengthening some hypotheses on the data, we address the improvement of the regularity of the solution
provided by Theorem 2.1. Hence, suppose moreover

θ0 ∈ V, (2.22)

χ1 ∈ W, χ1 ∈ domβ a.e. in Ω, (2.23)

there exists ξ ∈ H such that ξ ∈ β(χ1) a.e. in Ω, (2.24)

u1 ∈ H 2(Ω) ∩ V0. (2.25)

Then, the following regularity result holds.

Theorem 2.2. Assume (2.22)–(2.25) in addition to (2.6)–(2.10). Then, there exist T̂ ∈ (0, T ] and a unique quadruple
of functions (θ,χ,u, ξ) with regularity

θ ∈ H 1(0, T̂ ;H) ∩ C0([0, T̂ ];V ) ∩ L2(0, T̂ ;W), (2.26)

χ ∈ W 2,∞(0, T̂ ;H) ∩ H 2(0, T̂ ;V ) ∩ W 1,∞(0, T̂ ;W), (2.27)

u ∈ W 2,∞(0, T̂ ;H) ∩ H 2(0, T̂ ;V0) ∩ W 1,∞(
0, T̂ ;H 2(Ω)

)
, (2.28)

ξ ∈ L∞(0, T̂ ;H) (2.29)

fulfilling (1.22)–(1.24), (2.17)–(2.21), and

θt − �θ = θχa · ∇ut + θχta · ∇u + |χt |2 + |∇χt |2 + |∇ut |2 a.e. in QT̂ . (2.30)

The proof of these results will be carried out throughout the remainder of the paper: the existence of a local solution
is derived by means of a fixed point technique; the uniqueness result is established by some contracting estimates and
the regularity result is obtained by performing proper a priori estimates.
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3. The existence result

To prove the existence result stated by Theorem 2.1, we apply the Schauder fixed point theorem to a suitable
operator T we are going to construct.

First step: definition of T .
For R > 0, let

X := {
(u,χ) ∈ H 1(0, τ ;W 1,4

0 (Ω)
) × H 1(0, τ ;W 1,4(Ω)

)
, χ ∈ [0,1] a.e. in Qτ ,∥∥(u,χ)

∥∥
H 1(0,τ ;W 1,4

0 (Ω))×H 1(0,τ ;W 1,4(Ω))
� R

}
, (3.1)

where τ ∈ (0, T ] will be chosen later. First, we fix an arbitrary (û, χ̂) ∈ X and we substitute (u,χ) in (2.16) by (û, χ̂).
Note, in particular, that |χ̂t |2 + |∇χ̂t |2 + |∇ût |2 belongs to L1(0, τ ;H). Standard results in the theory of parabolic
equations (see, e.g., [1]) ensure that there exists a unique

θ := T1(û, χ̂) ∈ [
W 1,1(0, τ ;H) + H 1(0, τ ;V ′)

] ∩ C0([0, τ ];H ) ∩ L2(0, τ, ;V ) (3.2)

solving the corresponding equation (2.16) with the associated Cauchy condition (1.22). Then, we consider (2.19) and
replace θ and χ by θ = T1(û, χ̂) and χ̂ , respectively. We denote by

u := T2
(

T1(û, χ̂), χ̂
) ∈ H 2(0, τ ;H) ∩ W 1,∞(0, τ ;V0) ∩ H 1(0, τ ;H 2(Ω)

)
the corresponding solution satisfying (1.24) (see, e.g., [5] for existence and uniqueness results related to this kind of
equations). Finally, we consider θ = T1(û, χ̂) and u = T2(θ, χ̂) in (2.17). The theory of evolution equations associated
to maximal monotone operators (see, e.g., [2]) ensure that the corresponding system (2.17)–(2.18)–(1.23) admits a
unique pair (χ, ξ) of solutions, with

χ := T3(θ, u) ∈ H 2(0, τ ;H) ∩ W 1,∞(0, τ ;V ) ∩ H 1(0, τ ;W)

and ξ ∈ L2(0, τ ;H). By the above construction, it results well-defined an operator T obtained by the composition of
T1, T2, T3, i.e.

T (û, χ̂) = (
u = T2(θ, χ̂),χ = T3(θ, u)

)
, where θ = T1(û, χ̂). (3.3)

Second step: a priori estimates.
Let us proceed by performing some (formal) a priori estimates on the above defined functions (θ,χ,u, ξ). Actually,

we should exploit the following estimates on suitable regularized versions of the equations and then passing to the
limit with respect to the approximating parameters. However, for the sake of simplicity, we prefer to formally proceed,
as the arguments we apply to prove compactness and continuity of T are mostly the same we should use to pass to
the limit in the regularized versions of the estimates.
First a priori estimate. We first deal with (2.16), in which we now intend that û and χ̂ are written in place of u and χ .
Test (2.16) by θ and integrate over (0, t), with t ∈ (0, τ ) (cf. (3.1)). We have

1

2

∥∥θ(t)
∥∥2

H
+ ‖∇θ‖2

L2(0,t;H)
� 1

2
‖θ0‖2

H +
3∑

j=1

∣∣Ij (t)
∣∣, (3.4)

where the integrals Ij (t) are handled as follows. Using Hölder’s and Young’s inequalities, the uniform bound of χ̂

(cf. (3.1)), and Sobolev’s embedding V ↪→ L4(Ω), we get

I1(t) =
t∫

0

∫
Ω

θχ̂a · ∇ût θ � c

t∫
0

‖θ‖L4(Ω)‖∇ût‖L4(Ω)‖θ‖H

� 1

4
‖θ‖2

L2(0,t;V )
+ c

t∫
0

‖∇ût‖2
L4(Ω)

‖θ‖2
H . (3.5)

We warn that here and in the sequel, we employ the same symbol c for different positive constants even in the same
formula, in regard of simplicity. Now, note that by definition of X the function ‖∇ût‖2

L4(Ω)
belongs to L1(0, τ ). Then,

let us recall Sobolev’s embedding W 1,4(Ω) ↪→ L∞(Ω). Thus, analogously proceeding, we infer that
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I2(t) =
t∫

0

∫
Ω

θχ̂ta · ∇ûθ � c

t∫
0

‖θ‖L4(Ω)‖χ̂t‖L∞(Ω)‖∇û‖L4(Ω)‖θ‖H

� 1

4
‖θ‖2

L2(0,t;V )
+ c

t∫
0

‖χ̂t‖2
W 1,4(Ω)

‖θ‖2
H , (3.6)

as ‖∇û‖L∞(0,τ ;L4(Ω)) � c, by (3.1). In addition, there holds ‖χ̂t‖2
W 1,4(Ω)

∈ L1(0, τ ). Finally, we specify the last inte-
gral as

I3(t) =
t∫

0

∫
Ω

(|χ̂t |2 + |∇χ̂t |2 + |∇ût |2
)
θ �

t∫
0

(‖χ̂t‖2
L4(Ω)

+ ‖∇χ̂t‖2
L4(Ω)

+ ‖∇û‖2
L4(Ω)

)‖θ‖H , (3.7)

and we point out that ‖χ̂t‖2
L4(Ω)

+ ‖∇χ̂t‖2
L4(Ω)

+ ‖∇û‖2
L4(Ω)

is bounded in L1(0, τ ). Thus, combining (3.4) with

(3.5)–(3.7), summing up ‖θ‖2
L2(0,t;H)

to both sides of (3.4), we can apply a generalized version of Gronwall’s lemma
(see, e.g., [1]) to deduce

‖θ‖L∞(0,τ ;H)∩L2(0,τ ;V ) � c. (3.8)

Now, let us deal with (2.19) in which χ̂ and θ = T1(û, χ̂) are introduced.
Second a priori estimate. We test (2.19) by −�ut and integrate over (0, t). We have

1

2

∥∥∇ut (t)
∥∥2

H
+ ‖�ut‖2

L2(0,t;H)
� 1

2
‖∇u1‖2

H +
7∑

j=4

∣∣Ij (t)
∣∣. (3.9)

Then, we handle the integrals Ij (t). By use of Hölder’s and Young’s inequalities, we get

I4(t) =
t∫

0

∫
Ω

|∇χ̂ · ∇u�ut | �
t∫

0

‖∇χ̂‖L4(Ω)‖∇u‖L4(Ω)‖�ut‖H

� 1

8
‖�ut‖2

L2(0,t;H)
+ c

(
1 +

t∫
0

‖�ut‖2
L2(0,s;H)

ds

)
, (3.10)

where we have exploited

∥∥∇u(s)
∥∥2

L4(Ω)
� c

∥∥�u(s)
∥∥2

H
� c

(
1 +

s∫
0

‖�ut‖2
H

)
and that

‖∇χ̂‖L∞(0,τ ;L4(Ω)) � c.

Analogously, on account of the uniform bound of χ̂ (cf. (3.1)), we obtain

I5(t) =
t∫

0

∫
Ω

|χ̂�u�ut | � c

t∫
0

‖�u‖H ‖�ut‖H

� 1

8
‖�ut‖2

L2(0,t;H)
+ c

(
1 +

t∫
0

‖�ut‖2
L2(0,s;H)

ds

)
. (3.11)

The last two integrals in (3.9) are treated as follows (cf. (3.1) and (3.8))

I6(t) =
t∫ ∫

|a · ∇θχ̂�ut | � 1

8
‖�ut‖2

L2(0,t;H)
+ c‖θ‖2

L2(0,t;V )
� 1

8
‖�ut‖2

L2(0,t;H)
+ c (3.12)
0 Ω
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and

I7(t) =
t∫

0

∫
Ω

|θa · ∇χ̂�ut | � 1

8
‖�ut‖2

L2(0,t;H)
+ c

t∫
0

‖θ‖2
V ‖∇χ̂‖2

L4(Ω)

� 1

8
‖�ut‖2

L2(0,t;H)
+ c. (3.13)

Thus, an application of Gronwall’s lemma to (3.9) combined with (3.10)–(3.13) leads to

‖u‖W 1,∞(0,τ ;V0)∩H 1(0,τ ;H 2(Ω)) � c. (3.14)

Note that, by a comparison in (2.19), we also infer

‖utt‖L2(0,τ ;H) � c. (3.15)

Further a priori estimates. Now, we perform some a priori estimates on (2.17) where u and θ are fixed by the previous
arguments. We are still proceeding formally as, also in this case, we should deal with the regularized version of (2.17)
obtained introducing the Yosida approximation of the operator β and then passing to the limit with respect to the
approximating parameter. However, as it is a fairly standard procedure in the theory of (parabolic) equations associated
with maximal monotone operators we directly proceed formally.

We test (2.17) by −�χt and integrate over (0, t). We get

1

2

∥∥∇χt (t)
∥∥2

H
+ ‖�χt‖2

L2(0,t;H)
+ 1

2

∥∥�χ(t)
∥∥2

H
+

t∫
0

∫
Ω

ξ(−�χt)

� 1

2
‖∇χ1‖2

H + 1

2
‖�χ0‖2

H +
10∑

j=8

∣∣Ij (t)
∣∣ (3.16)

where, in particular, the monotonicity of β yields for a.a. t (the notation is formal)∫
Ω

ξ(−�χt) � 0 (3.17)

(see [15, Lemma 4.1], for a rigorous justification). Then, we estimate the right-hand side of (3.16) as follows

I8(t) =
t∫

0

∫
Ω

w�χt � 1

4
‖�χt‖2

L2(0,t;H)
+ c, (3.18)

I9(t) =
t∫

0

∫
Ω

1

2
|∇u|2�χt � 1

4
‖�χt‖2

L2(0,t;H)
+ c

t∫
0

‖∇u‖4
L4(Ω)

� 1

4
‖�χt‖2

L2(0,t;H)
+ c, (3.19)

I10(t) =
t∫

0

∫
Ω

θa · ∇u�χt � 1

4
‖�χt‖2

L2(0,t;H)
+ c

t∫
0

‖θ‖2
V ‖∇u‖2

L4(Ω)

� 1

4
‖�χt‖2

L2(0,t;H)
+ c (3.20)

thanks to (3.14) and (3.8). Now, we combine (3.17)–(3.20) in (3.16) and we obtain

‖�χ‖H 1(0,τ ;H) � c, (3.21)

‖∇χ‖W 1,∞(0,τ ;H) � c. (3.22)

Then, we test (2.17) by χtt and integrate over (0, t). We find
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‖χtt‖2
L2(0,t;H)

+ 1

2

∥∥∇χt (t)
∥∥2

H
+

∫
Ω

β̂
(
χt (t)

)
� 1

2
‖∇χ1‖2

H +
∫
Ω

β̂(χ1) +
12∑

j=11

∣∣Ij (t)
∣∣, (3.23)

where we have used the chain rule for β̂ , see [8, Lemma 3.3]. Moreover, (3.21) leads to

I11(t) =
t∫

0

∫
Ω

�χ χtt � 1

4
‖χtt‖2

L2(0,t;H)
+ c‖�χ‖2

L2(0,t;H)
� 1

4
‖χtt‖2

L2(0,t;H)
+ c. (3.24)

Concerning I12(t), we can argue as in the derivation of (3.18)–(3.20). We get

I12(t) =
t∫

0

∫
Ω

(
w − 1

2
|∇u|2 − θa · ∇u

)
χtt � 1

4
‖χtt‖2

L2(0,t;H)
+ c. (3.25)

Then, we combine (3.24)–(3.25) in (3.23) and we deduce that

‖χtt‖L2(0,τ ;H) � c. (3.26)

Note that, thanks to elliptic regularity results, (3.26), (3.21), and (3.22) yield

‖χ‖H 2(0,τ ;H)∩W 1,∞(0,τ ;V )∩H 1(0,τ ;W) � c. (3.27)

Finally, a comparison in (2.17) leads to

‖ξ‖L2(0,τ ;H) � c. (3.28)

Third step: the existence of a fixed point of T .
Now, we are in the position of showing that T fulfills the assumptions of the Schauder Theorem (cf. (3.1) and

(3.3)). At first, we prove that it maps X into itself, at least for a suitable choice of τ . Thanks to (3.27), by using
standard interpolation tools (see, e.g., [16]), we get

‖χ‖W 1,8/3(0,τ ;W 1,4(Ω)) � c1, (3.29)

where by c1 (and then c2) we denote a positive constant depending on R. Thus, by Hölder’s inequality, we obtain

‖χ‖H 1(0,τ ;W 1,4(Ω)) � c̃1τ
1/8‖χ‖W 1,8/3(0,τ ;W 1,4(Ω)) � R, (3.30)

where the constant c̃1 is positive provided, e.g., τ � R8(c̃1 c1)
−8. Analogously proceeding, on account of (3.14), we

get

‖u‖
W 1,8/3(0,τ ;W 1,4

0 (Ω))
� c2, (3.31)

and hence

‖u‖
H 1(0,τ ;W 1,4

0 (Ω))
� c̃2τ

1/8‖u‖
W 1,8/3(0,τ ;W 1,4

0 (Ω))
� R, (3.32)

provided, e.g., τ � R8(c̃2c2)
−8 (c̃2 > 0).

Thus, to verify that T maps X into itself, it remains to show that χ ∈ [0,1] a.e. in Qτ , at least for a suitable choice
of τ .

Recalling that domβ ⊆ (−∞,0] and that χ0 ∈ (0,1], we only have to prove that χ � 0 a.e. in Qτ , as χ can-
not increase. To this aim, we may suppose that there exists δ ∈ (0,1) such that χ0(x) � δ ∀x ∈ Ω and show that
‖χ − χ0‖L∞(Qτ ) � δ (cf. also [4] and [5]). Owing to the regularity of χ , we proceed as follows (cf. (1.26)–(1.27)).
Let τ to be chosen such that

‖χ − χ0‖L∞(Qτ ) �
τ∫

0

‖χt‖L∞(Ω) � cΩτ 1/2‖χt‖L2(0,τ ;W 1,4(Ω)) � cΩτ 1/2R � δ, (3.33)

with cΩ denoting the embedding constant of W 1,4(Ω) into L∞(Ω). Eventually, we may choose

τ = min
{
R8(c̃1 c1)

−8,R8(c̃2c2)
−8, δ2(cΩR)−2}. (3.34)
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Let us point out that τ depends only on the data of the problem (and on R).
Concerning the compactness of the operator T with respect to the topology induced on X by H 1(0, τ ;W 1,4

0 (Ω))×
H 1(0, τ ;W 1,4(Ω)), this easily follows by (3.14), (3.15), and (3.27).

Now, it remains to prove that T is continuous with respect to the topology induced on X by H 1(0, τ ;W 1,4
0 (Ω)) ×

H 1(0, τ ;W 1,4(Ω)). We proceed as follows: we consider a sequence

(ûn, χ̂n) → (û, χ̂) in X , (3.35)

and show that

T (ûn, χ̂n) → T (û, χ̂) in X .

Let us specify some notation. Let θn be the solution of the problem (2.16)–(1.22), once ûn and χ̂n are fixed, i.e.
θn := T1(ûn, χ̂n). Analogously, let un := T2(θn, χ̂n) be the solution of (2.19)–(1.24), with θn and χ̂n fixed; let
(χn := T3(θn, un), ξn) be the solution of (2.17)–(2.18)–(1.23), once θn and un are fixed. By the above a priori es-
timates (cf. (3.8), (3.14), (3.15), (3.27), and (3.28)), we can find a constant c independent of n such that

‖θn‖L∞(0,τ ;H)∩L2(0,τ ;V ) � c, (3.36)

‖un‖H 2(0,τ ;H)∩W 1,∞(0,τ ;V0)∩H 1(0,τ ;H 2(Ω)) � c, (3.37)

‖χn‖H 2(0,τ ;H)∩W 1,∞(0,τ ;V )∩H 1(0,τ ;W) � c, (3.38)

‖ξn‖L2(0,τ ;H) � c. (3.39)

Thus, well-known weak and weak-star convergence results yield, at least for suitable subsequences,

θn

∗
⇀ θ in L∞(0, τ ;H) ∩ L2(0, τ ;V ), (3.40)

un

∗
⇀ u in H 2(0, τ ;H) ∩ W 1,∞(0, τ ;V0) ∩ H 1(0, τ ;H 2(Ω)

)
, (3.41)

χn

∗
⇀ χ in H 2(0, τ ;H) ∩ W 1,∞(0, τ ;V ) ∩ H 1(0, τ ;W), (3.42)

ξn ⇀ ξ in L2(0, τ ;H). (3.43)

In particular, by strong compactness (cf. [14,19]), we can also infer

un → u in H 1((0, τ );W 1,4
0 (Ω)

)
, (3.44)

χn → χ in H 1((0, τ );W 1,4(Ω)
)
. (3.45)

Now, we show that θ = T1(û, χ̂). We use (3.40) and (3.35) to pass to the limit in (2.16), written for ûn, χ̂n, and θn.

Hence, a comparison in (2.16) gives θnt

∗
⇀ θt in L1(0, τ ;H) + L2(0, τ ;V ′). Thus, we get that θ solves the limit

equation (where û and χ̂ are fixed), and, by uniqueness of the solution, it is identified with T1(û, χ̂).

Remark 3.1. Actually, we can conclude more on the convergence of θn. Indeed, let us take (2.16) written for ûn and
χ̂n and then for û and χ̂ . We take the difference between the corresponding equations and we test it by θn − T1(û, χ̂).
After integrating over (0, t), we get

1

2

∥∥(
θn − T1(û, χ̂)

)
(t)

∥∥2
H

+ ∥∥∇(
θn − T1(û, χ̂)

)∥∥2
L2(0,t;H)

�
19∑

j=13

∣∣Ij (t)
∣∣, (3.46)

where the integrals Ij (t) are treated as follows. Applying Hölder’s and Young’s inequalities, and Sobolev’s embed-
dings, we have

I13(t) =
t∫

0

∫
Ω

(
θn − T1(û, χ̂)

)2
χ̂na · ∇ûnt

� c

t∫ ∥∥θn − T1(û, χ̂)
∥∥

H

∥∥θn − T1(û, χ̂)
∥∥

L4(Ω)
‖∇ûnt‖L4(Ω)
0
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� δ
∥∥θn − T1(û, χ̂)

∥∥2
L2(0,t;V )

+ c

t∫
0

‖∇ûnt‖2
L4(Ω)

∥∥θn − T1(û, χ̂)
∥∥2

H
, (3.47)

for a suitable positive constant δ to be chosen later. Analogously proceeding, we infer that

I14(t) =
t∫

0

∫
Ω

T1(û, χ̂) (χ̂n − χ̂ )a · ∇ûnt

(
θn − T1(û, χ̂)

)

� c

t∫
0

∥∥T1(û, χ̂)
∥∥

L4(Ω)
‖χ̂n − χ̂‖L∞(Ω)‖∇ûnt‖L4(Ω)

∥∥θn − T1(û, χ̂)
∥∥

H

� c‖χ̂n − χ̂‖2
L∞(0,t;W 1,4(Ω))

∥∥T1(û, χ̂)
∥∥2

L2(0,t;V )
+ c

t∫
0

‖∇ûnt‖2
L4(Ω)

∥∥θn − T1(û, χ̂)
∥∥2

H
. (3.48)

Next, we have

I15(t) =
t∫

0

∫
Ω

T1(û, χ̂)χ̂a · (∇ûnt − ∇ût )
(
θn − T1(û, χ̂)

)

� c

t∫
0

∥∥T1(û, χ̂)
∥∥

L4(Ω)
‖∇ûnt − ∇ût‖L4(Ω)

∥∥θn − T1(û, χ̂)
∥∥

H

� c‖ûnt − ût‖2
L2(0,t;W 1,4

0 (Ω))
+ c

t∫
0

∥∥T1(û, χ̂)
∥∥2

V

∥∥θn − T1(û, χ̂)
∥∥2

H
. (3.49)

Analogously arguing, we infer that

I16(t) =
t∫

0

∫
Ω

(
θn − T1(û, χ̂)

)2
χ̂nta · ∇ûn

� c

t∫
0

∥∥θn − T1(û, χ̂)
∥∥

H

∥∥θn − T1(û, χ̂)
∥∥

L4(Ω)
‖χ̂nt‖L∞(Ω)‖∇ûn‖L4(Ω) � δ

∥∥θn − T1(û, χ̂)
∥∥2

L2(0,t;V )

+ c‖ûn‖2
L∞(0,t;W 1,4

0 (Ω))

t∫
0

‖χ̂nt‖2
W 1,4(Ω)

∥∥θn − T1(û, χ̂)
∥∥2

H
, (3.50)

for a suitable positive constant δ to be chosen later. Moreover

I17(t) =
t∫

0

∫
Ω

T1(û, χ̂)(χ̂nt − χ̂t )a · ∇ûn

(
θn − T1(û, χ̂)

)

� c

t∫
0

∥∥T1(û, χ̂)
∥∥

L4(Ω)
‖χ̂nt − χ̂t‖L∞(Ω)‖∇ûn‖L4(Ω)

∥∥θn − T1(û, χ̂)
∥∥

H
� c‖χ̂nt − χ̂t‖2

L2(0,t;W 1,4(Ω))

+ c‖ûn‖2
L∞(0,t;W 1,4

0 (Ω))

t∫ ∥∥T1(û, χ̂)
∥∥2

V

∥∥θn − T1(û, χ̂)
∥∥2

H
(3.51)
0



E. Bonetti, G. Bonfanti / Ann. I. H. Poincaré – AN 25 (2008) 1187–1208 1199
and

I18(t) =
t∫

0

∫
Ω

T1(û, χ̂)χ̂ta · (∇ûn − ∇û)
(
θn − T1(û, χ̂)

)

� c

t∫
0

∥∥T1(û, χ̂)
∥∥

H
‖χ̂t‖L∞(Ω)‖∇ûn − ∇û‖L4(Ω)

∥∥θn − T1(û, χ̂)
∥∥

L4(Ω)
� δ

∥∥θn − T1(û, χ̂)
∥∥2

L2(0,t;V )

+ c
∥∥T1(û, χ̂)

∥∥2
L∞(0,t;H)

‖χ̂t‖2
L2(0,t;W 1,4(Ω))

‖ûn − û‖2
L∞(0,t;W 1,4

0 (Ω))
, (3.52)

for a suitable positive constant δ to be chosen later. Finally, we deal with the difference of the quadratic terms. For
simplicity, we let

f̂n = |χ̂nt |2 + |∇χ̂nt |2 + |∇ûnt |2
and

f̂ = |χ̂t |2 + |∇χ̂t |2 + |∇ût |2.
We have

I19(t) =
t∫

0

∫
Ω

(f̂n − f̂ )
(
θn − T1(û, χ̂)

)
�

t∫
0

‖f̂n − f̂ ‖H

∥∥θn − T1(û, χ̂)
∥∥

H
. (3.53)

Note that ‖f̂n − f̂ ‖L1(0,t;H) → 0 as n → +∞, thanks to (3.35). Thus, we collect (3.47)–(3.53), on account of the
uniform bounds of ûn, χ̂n, T1(û, χ̂), û, χ̂ (cf. (3.1) and (3.8)) and the convergence specified by (3.35). Choosing δ

small enough (e.g. δ � 1/4), we can apply Gronwall’s lemma to (3.46) and deduce

θn → T1(û, χ̂) in L∞(0, τ ;H) ∩ L2(0, τ ;V ). � (3.54)

Now, we deal with (2.19) written for un, with θn and χ̂n fixed. It is a standard matter to pass to the limit as n → +∞
owing to (3.41), (3.35), and (3.54). Moreover, thanks to the uniqueness of the solution of the problem (2.19)–(1.24),
once θ and χ̂ are fixed, we can identify with u = T2(θ, χ̂) and (3.44) holds for the whole sequence.

Next, let us consider (2.17) written for (χn, ξn), once θn and un are fixed. We pass to the limit as n → +∞ in (2.17)
thanks to (3.42), (3.43), (3.44), and (3.54). Moreover, owing to (3.45) and (3.43), monotonicity arguments (cf. [8])
ensure that ξ ∈ β(χt ). Again, by the uniqueness result holding for the problem (2.17)–(2.18)–(1.23), once θ and u are
fixed, we can identify with χ = T3(θ, u) and extend (3.45) to the whole sequence. Finally, (3.54), (3.44), (3.45) (and
the above argument) lead to

T (ûn, χ̂n) → T (û, χ̂) in H 1(0, τ ;W 1,4
0 (Ω)

) × H 1(0, τ ;W 1,4(Ω)
)
, (3.55)

which concludes the proof of the continuity of the operator T .
Finally, we complete the proof of the regularity specified by (2.11). To this aim, we perform the following estimate

on the component θ of the solution provided by the fixed point procedure. After adding θ to both sides of (2.16), we
test it by J−1θt and integrate over (0, t). By the definition of J (cf. (2.1)), using Hölder’s and Young’s inequalities,
Sobolev’s embeddings and owing to (2.13) and (2.14), we get

‖θt‖2
L2(0,t;V ′) + ∥∥θ(t)

∥∥2
H

� c‖θ0‖2
H + c

t∫
0

‖θ‖V ′
∥∥J−1θt

∥∥
V

+ c

t∫
0

(‖χ‖L∞(Ω)‖∇ut‖H + ‖χt‖L4(Ω)‖∇u‖L4(Ω)

)‖θ‖L4(Ω)

∥∥J−1θt

∥∥
V

+ c

t∫ (‖χt‖L4(Ω)‖χt‖H + ‖∇χt‖L4(Ω)‖∇χt‖H + ‖∇ut‖L4(Ω)‖∇ut‖H

)∥∥J−1θt

∥∥
V

0
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� 1

2
‖θt‖2

L2(0,t;V ′) + c‖θ‖2
L2(0,t;V )

× (
1 + ‖χ‖2

L∞(Qt )
‖ut‖2

L∞(0,t;V0)
+ ‖u‖2

L∞(0,t;W 1,4
0 (Ω))

‖χt‖2
L∞(0,t;V )

)
+ c‖χt‖2

L∞(0,t;V )‖χt‖2
L2(0,t;W 1,4(Ω))

+ c‖ut‖2
L∞(0,t;V0)

‖ut‖2
L2(0,t;W 1,4

0 (Ω))
(3.56)

from which (2.11) easily follows.

Fourth step: positivity of θ .
In order to complete the proof of the existence part in Theorem 2.1, it remains to establish the positivity of the

temperature. The strategy of the proof relies on providing the non-negativity of θ and a bound for the inverse of the
temperature 1/θ (cf. (2.12)). Preliminarily, we exploit a maximum principle argument. Thus, we test (2.16) by −θ−,
θ− denoting the negative part of θ , i.e. θ− := max{0,−θ}, and integrate over (0, t). Owing to (2.6) and using Hölder’s
inequality, we can infer that

1

2

∥∥θ−(t)
∥∥2

H
+ ‖∇θ−‖2

L2(0,t;H)
� c

t∫
0

‖θ−‖H ‖θ−‖L4(Ω)‖∇ut‖L4(Ω)

+ c

t∫
0

‖θ−‖H ‖θ−‖L6(Ω)‖χt‖L6(Ω)‖∇u‖L6(Ω). (3.57)

Hence, we handle the right-hand side of (3.57) by using Young’s inequality and Sobolev’s embeddings. Recalling that
‖∇u‖L6(Ω) and ‖χt‖L6(Ω) are bounded in L∞(0, τ ) due to (2.13), (2.14), we get

1

2

∥∥θ−(t)
∥∥2

H
+ 1

2
‖θ−‖2

L2(0,t;V )
� c

t∫
0

(
1 + ‖∇ut‖2

L4(Ω)

)‖θ−‖2
H . (3.58)

Then, since ‖∇ut‖2
L4(Ω)

belongs to L1(0, τ ) (cf. (2.14)), we can apply to (3.58) Gronwall’s lemma and deduce

‖θ−‖L∞(0,τ ;H)∩L2(0,τ ;V ) � 0, (3.59)

which gives

θ � 0 a.e. in Qτ . (3.60)

Next step is to prove (2.12) (so that combining (2.12) with (3.60) we get (2.21)). For any ε > 0, let us define

θε := (θ − ε)+ + ε = max{θ, ε}. (3.61)

We choose v = −θ−2
ε as test function in (2.16) and we integrate over (0, t). Applying the chain rule (see [18] for a

detailed justification) and observing that θε(0) � θ0 a.e. in Ω and ∇θ ·∇θε = |∇θε|2 a.e. in Qτ , we get (cf. also (2.13),
(2.14))∫

Ω

θ−1
ε (t) + 8

t∫
0

∫
Ω

∣∣∇θ−1/2
ε

∣∣2 �
∫
Ω

θ−1
0 −

t∫
0

∫
Ω

θ∇ut · aχθ−2
ε −

t∫
0

∫
Ω

θχt∇u · aθ−2
ε . (3.62)

We handle the right-hand side of (3.62) recalling also that 0 � θ � θε a.e. in Qτ . We obtain

t∫
0

∫
Ω

θ∇ut · aχθ−2
ε � c

t∫
0

∫
Ω

|∇ut |θ−1
ε � c

t∫
0

‖∇ut‖L4(Ω)

∥∥θ−1/2
ε

∥∥
L4(Ω)

∥∥θ−1/2
ε

∥∥
H

�
t∫ ∥∥θ−1/2

ε

∥∥2
V

+ c

t∫
‖∇ut‖2

L4(Ω)

∥∥θ−1/2
ε

∥∥2
H

. (3.63)
0 0



E. Bonetti, G. Bonfanti / Ann. I. H. Poincaré – AN 25 (2008) 1187–1208 1201
Analogously, we can infer that
t∫

0

∫
Ω

θχt∇u · aθ−2
ε � c

t∫
0

∫
Ω

|χt ||∇u|θ−1
ε � c

t∫
0

‖χt‖L6(Ω)‖∇u‖L6(Ω)

∥∥θ−1/2
ε

∥∥
L6(Ω)

∥∥θ−1/2
ε

∥∥
H

�
t∫

0

∥∥θ−1/2
ε

∥∥2
V

+ c

t∫
0

∥∥θ−1/2
ε

∥∥2
H

, (3.64)

where again we have used the fact that ‖∇u‖L6(Ω) and ‖χt‖L6(Ω) are bounded in L∞(0, τ ) due to (2.13), (2.14). Next,

adding 8
∫ t

0 ‖θ−1/2
ε ‖2

H to both sides of (3.62), on account of (3.63) and (3.64), we have∫
Ω

θ−1
ε (t) +

t∫
0

∥∥θ−1/2
ε

∥∥2
V

�
∫
Ω

θ−1
0 + c

t∫
0

(
1 + ‖∇ut‖2

L4(Ω)

)∥∥θ−1/2
ε

∥∥2
H

. (3.65)

On account of (2.6) and (2.14), we use Gronwall’s lemma and we deduce∥∥θ−1
ε

∥∥
L∞(0,τ ;L1(Ω))

� c. (3.66)

The constant c in (3.66) is independent of ε, thus we can apply the monotone convergence theorem as ε → 0+
obtaining (2.12) and finally (2.21).

4. The uniqueness result

In this section we prove the uniqueness part in Theorem 2.1. Let us consider two families of solutions (θi, χi, ui, ξi),
i = 1,2, to (2.16)–(2.19) with the associated Cauchy conditions (1.22)–(1.24) defined in some interval (0, τ ) and
fulfilling the regularity prescribed by (2.11)–(2.15). Hence, let us denote the difference by

θ̃ = θ1 − θ2, χ̃ = χ1 − χ2, ũ = u1 − u2, ξ̃ = ξ1 − ξ2.

To prove that θ̃ = χ̃ = ũ = ξ̃ = 0, we exploit suitable contracting estimates on the solutions. Before proceeding, we
introduce some useful notation. By f̃ we denote the difference of two functions f1, f2. Hence, there holds

f̃g = f1g1 − f2g2 = f1g̃ + g2f̃ = g1f̃ + f2g̃,

so that, simplifying notation, in the sequel we omit the subscript writing

f̃g = f g̃ + gf̃ .

We first consider (2.16) written for two families of solutions, take the difference, add θ̃ to both sides of it, and test it
by J−1θ̃ . After integrating over (0, t), we get

1

2

∥∥θ̃ (t)
∥∥2

V ′ + ‖θ̃‖2
L2(0,t;H)

�
29∑

j=20

∣∣Ij (t)
∣∣, (4.1)

where the integrals Ij (t) are treated as follows. By the definition of J (cf. (2.1)), we first have

I20(t) =
t∫

0

∫
Ω

θ̃J−1θ̃ =
t∫

0

‖θ̃‖2
V ′ . (4.2)

Moreover, using Hölder’s and Young’s inequalities, the uniform bound of χ (cf. (2.20)), and Sobolev’s embeddings,
we have

I21(t) =
t∫

0

∫
Ω

θ̃χa · ∇utJ
−1θ̃ � c

t∫
0

‖θ̃‖H ‖∇ut‖L4(Ω)

∥∥J−1θ̃
∥∥

L4(Ω)

� δ‖θ̃‖2
L2(0,t;H)

+ c

t∫
‖ut‖2

H 2(Ω)
‖θ̃‖2

V ′ , (4.3)
0



1202 E. Bonetti, G. Bonfanti / Ann. I. H. Poincaré – AN 25 (2008) 1187–1208
for a suitable positive δ to be chosen later. Note that ‖ut‖2
H 2(Ω)

∈ L1(0, τ ) (cf. (2.14)). Hence, we analogously proceed
and we infer that

I22(t) =
t∫

0

∫
Ω

θχ̃a · ∇utJ
−1θ̃ � c

t∫
0

‖θ‖H ‖χ̃‖L6(Ω)‖∇ut‖L6(Ω)

∥∥J−1θ̃
∥∥

L6(Ω)

� c‖χ̃‖2
L2(0,t;V )

+ c‖θ‖2
L∞(0,t;H)

t∫
0

‖ut‖2
H 2(Ω)

‖θ̃‖2
V ′

� c

t∫
0

‖χ̃t‖2
L2(0,s;V )

ds + c

t∫
0

‖ut‖2
H 2(Ω)

‖θ̃‖2
V ′ , (4.4)

where we have used the fact that ‖θ‖L∞(0,τ ;H) is bounded (cf. (2.11)). Moreover, we have

I23(t) =
t∫

0

∫
Ω

θχa · ∇ũt J
−1θ̃ � c

t∫
0

‖θ‖L4(Ω)‖∇ũt‖H

∥∥J−1θ̃
∥∥

L4(Ω)

� δ′‖∇ũt‖2
L2(0,t;H)

+ c

t∫
0

‖θ‖2
V ‖θ̃‖2

V ′ , (4.5)

for a suitable positive δ′ to be chosen later. Arguing similarly, we infer that

I24(t) =
t∫

0

∫
Ω

θ̃χta · ∇uJ−1θ̃ � c

t∫
0

‖θ̃‖H ‖χt‖L∞(Ω)‖∇u‖L4(Ω)

∥∥J−1θ̃
∥∥

L4(Ω)

� c

t∫
0

‖θ̃‖H ‖χt‖W‖u‖H 2(Ω)‖θ̃‖V ′ � δ‖θ̃‖2
L2(0,t;H)

+ c

t∫
0

‖χt‖2
W‖θ̃‖2

V ′ , (4.6)

where have used the fact that ‖u‖L∞(0,τ ;H 2(Ω)) � c. Moreover, we note that (2.13) yields ‖χt‖2
W ∈ L1(0, τ ). Since

(2.11)–(2.13) imply that ‖θ‖H ‖u‖H 2(Ω) is bounded in L∞(0, τ ), we deduce

I25(t) =
t∫

0

∫
Ω

θχ̃ta · ∇uJ−1θ̃ � c

t∫
0

‖θ‖H ‖χ̃t‖L6(Ω)‖∇u‖L6(Ω)

∥∥J−1θ̃
∥∥

L6(Ω)

� δ′′‖χ̃t‖2
L2(0,t;V )

+ c

t∫
0

‖θ̃‖2
V ′ , (4.7)

where the positive constant δ′′ will be suitably chosen. Now, using that fact that ‖χt‖2
L∞(0,t;V )

� c, we may infer

I26(t) =
t∫

0

∫
Ω

θχta · ∇ũJ−1θ̃ � c

t∫
0

‖θ‖L6(Ω)‖χt‖L6(Ω)‖∇ũ‖H

∥∥J−1θ̃
∥∥

L6(Ω)

� c

t∫
0

‖∇ũ‖2
H + c

t∫
0

‖θ‖2
V ‖θ̃‖2

V ′

� c

t∫
‖∇ũt‖2

L2(0,s;H)
ds + c

t∫
‖θ‖2

V ‖θ̃‖2
V ′ . (4.8)
0 0
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Finally, we deal with the difference of quadratic nonlinearities. We get

I27(t) = 2

t∫
0

∫
Ω

χ̃tχtJ
−1θ̃ � c

t∫
0

‖χ̃t‖L4(Ω)‖χt‖H

∥∥J−1θ̃
∥∥

L4(Ω)

� δ′′‖χ̃t‖2
L2(0,t;V )

+ c

t∫
0

‖θ̃‖2
V ′ . (4.9)

Secondly,

I28(t) = 2

t∫
0

∫
Ω

∇χ̃t · ∇χt J
−1θ̃ � c

t∫
0

‖∇χ̃t‖H ‖∇χt‖L4(Ω)

∥∥J−1θ̃
∥∥

L4(Ω)

� δ′′‖χ̃t‖2
L2(0,t;V )

+ c

t∫
0

‖χt‖2
W‖θ̃‖2

V ′ . (4.10)

Finally, we have

I29(t) = 2

t∫
0

∫
Ω

∇ũt · ∇utJ
−1θ̃ � c

t∫
0

‖∇ũt‖H ‖∇ut‖L4(Ω)

∥∥J−1θ̃
∥∥

L4(Ω)

� δ′‖∇ũt‖2
L2(0,t;H)

+ c

t∫
0

‖ut‖2
H 2(Ω)

‖θ̃‖2
V ′ . (4.11)

Now, combining (4.2)–(4.11) in (4.1) and choosing δ sufficiently small (e.g., δ � 1/4), we eventually obtain

1

2

∥∥θ̃ (t)
∥∥2

V ′ + 1

2
‖θ̃‖2

L2(0,t;H)
� c

t∫
0

(
1 + ‖θ‖2

V + ‖ut‖2
H 2(Ω)

+ ‖χt‖2
W

)‖θ̃‖2
V ′ + 2δ′‖∇ũt‖2

L2(0,t;H)

+ 3δ′′‖χ̃t‖2
L2(0,t;V )

+ c

t∫
0

(‖χ̃t‖2
L2(0,s;V )

+ ‖∇ũt‖2
L2(0,s;H)

)
ds. (4.12)

Now, we take the difference of (2.17) written for two families of solutions and test it by χ̃t . After integrating over
(0, t), we have

1

2

∥∥χ̃t (t)
∥∥2

H
+ ‖∇χ̃t‖2

L2(0,t;H)
+ 1

2

∥∥∇χ̃ (t)
∥∥2

H
+

t∫
0

∫
Ω

ξ̃ χ̃t �
32∑

j=30

∣∣Ij (t)
∣∣, (4.13)

where the integrals Ij (t) will be estimate as follows. Note first that
∫ t

0

∫
Ω

ξ̃ χ̃t in the left-hand side of (4.13) is non-
negative, due to the monotonicity of β . Arguing as before, we get

I30(t) =
t∫

0

∫
Ω

∇u∇ũ χ̃t � c

t∫
0

‖∇u‖V ‖∇ũ‖H ‖χ̃t‖V � δ′′‖χ̃t‖2
L2(0,t;V )

+ c

t∫
0

‖u‖2
H 2(Ω)

‖∇ũ‖2
H

� δ′′‖χ̃t‖2
L2(0,t;V )

+ c

t∫
‖∇ũt‖2

L2(0,s;H)
ds. (4.14)
0
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Moreover

I31(t) =
t∫

0

∫
Ω

θ̃a · ∇u χ̃t � c

t∫
0

‖θ̃‖H ‖∇u‖V ‖χ̃t‖V � δ′′‖χ̃t‖2
L2(0,t;V )

+ c1‖θ̃‖2
L2(0,t;H)

, (4.15)

where c1 depends also on ‖u‖L∞(0,τ ;H 2(Ω)). Similarly

I32(t) =
t∫

0

∫
Ω

θa · ∇ũχ̃t � c

t∫
0

‖θ‖V ‖∇ũ‖H ‖χ̃t‖V

� δ′′‖χ̃t‖2
L2(0,t;V )

+ c

t∫
0

‖θ‖2
V ‖∇ũt‖2

L2(0,s;H)
ds. (4.16)

Choosing in (4.14)–(4.16) δ′′ sufficiently small (e.g., δ′′ � 1/4) and adding ‖χ̃t‖2
L2(0,t;H)

to both sides of (4.13), we
deduce

1

2

∥∥χ̃t (t)
∥∥2

H
+ 1

4
‖χ̃t‖2

L2(0,t;V )
+ 1

2

∥∥∇χ̃ (t)
∥∥2

H

� c1‖θ̃‖2
L2(0,t;H)

+ c

t∫
0

(
1 + ‖θ‖2

V

)‖∇ũt‖2
L2(0,s;H)

+ c‖χ̃t‖2
L2(0,t;H)

. (4.17)

Finally, we write the difference of (2.19) written for two families of solutions and then test it by ũt . Integrating in
time, we have

1

2

∥∥ũt (t)
∥∥2

H
+ ‖∇ũt‖2

L2(0,t;H)
= −

t∫
0

∫
Ω

(χ̃∇u + χ∇ũ + aθ̃χ + aθχ̃) · ∇ũt �
36∑

j=33

∣∣Ij (t)
∣∣. (4.18)

Proceeding as above we handle the right-hand side of (4.18) as follows (cf. (2.14))

I33(t) � c

t∫
0

‖χ̃‖V ‖∇u‖V ‖∇ũt‖H � δ′‖∇ũt‖2
L2(0,t;H)

+ c

t∫
0

‖χ̃t‖2
L2(0,s;V )

ds, (4.19)

and (cf. (2.13))

I34(t) �
t∫

0

‖χ‖L∞(Ω)‖∇ũ‖H ‖∇ũt‖H � δ′‖∇ũt‖2
L2(0,t;H)

+ c

t∫
0

‖∇ũt‖2
L2(0,s;H)

ds. (4.20)

Now, it remains to treat the last two integrals

I35(t) � c

t∫
0

‖θ̃‖H ‖χ‖L∞(Ω)‖∇ũt‖H � δ′‖∇ũt‖2
L2(0,t;H)

+ c2‖θ̃‖2
L2(0,t;H)

, (4.21)

with c2 depending also on ‖χ‖L∞(Qτ ). Moreover

I36(t) � c

t∫
0

‖θ‖V ‖χ̃‖V ‖∇ũt‖H � δ′‖∇ũt‖2
L2(0,t;H)

+ c

t∫
0

‖θ‖2
V ‖χ̃t‖2

L2(0,s;V )
ds. (4.22)

For a suitable choice of δ′ in (4.19)–(4.22) (e.g., δ′ � 1/8), (4.18) leads to
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1

2

∥∥ũt (t)
∥∥2

H
+ 1

2
‖∇ũt‖L2(0,t;H) � c2‖θ̃‖2

L2(0,t;H)
+ c

t∫
0

(
1 + ‖θ‖2

V

)‖χ̃t‖2
L2(0,s;V )

ds

+ c

t∫
0

‖∇ũt‖2
L2(0,s;H)

ds. (4.23)

Now, we combine (4.12), (4.17), and (4.23). More precisely, we add (4.12) to (4.17) multiplied by 1/(8c1) and
to (4.23) multiplied by 1/(8c2). Then, we choose δ′ and δ′′ in (4.12) small enough (depending on c1 and c2) and
eventually get∥∥θ̃ (t)

∥∥2
V ′ + ‖θ̃‖2

L2(0,t;H)
+ ‖χ̃t‖2

L2(0,t;V )
+ ∥∥χ̃t (t)

∥∥2
H

+ ‖∇ũt‖2
L2(0,t;H)

+ ∥∥ũt (t)
∥∥2

H

� c

t∫
0

(
1 + ‖θ‖2

V + ‖ut‖2
H 2(Ω)

+ ‖χt‖2
W

)‖θ̃‖2
V ′ + c‖χ̃t‖2

L2(0,t;H)

+ c

t∫
0

(
1 + ‖θ‖2

V

)‖χ̃t‖2
L2(0,s;V )

ds + c

t∫
0

(
1 + ‖θ‖2

V

)‖∇ũt‖2
L2(0,s;H)

ds. (4.24)

Thus, Gronwall’s lemma applied to (4.24) ensures that

θ̃ = χ̃ = ũ = 0 a.e. in Qτ . (4.25)

Finally, by comparison in (2.17), it follows that ξ̃ = 0 a.e. in Qτ too which concludes the proof of the uniqueness
result in Theorem 2.1.

5. The regularity result

We perform here some (formal) a priori estimates on the solution (θ, u,χ, ξ) provided by Theorem 2.1. Owing
to stronger hypotheses on the initial data (see (2.22)–(2.25)), we will derive proper a priori bounds on the quadruple
(θ, u,χ, ξ) in some interval (0, T̂ ), T̂ ∈ (0, τ ]. Actually, we should establish the following estimates on suitable
regularized version of the equations and then pass to the limit, with respect to the approximating parameters. However,
for the sake of simplicity, we prefer directly proceed formally.

Now, let us test (2.16) by θt and integrate over (0, t), with 0 < t < τ . We get

‖θt‖2
L2(0,t;H)

+ 1

2

∥∥∇θ(t)
∥∥2

H
� 1

2
‖∇θ0‖2

H +
39∑

j=37

∣∣Ij (t)
∣∣. (5.1)

Using Hölder’s and Young’s inequalities, the uniform bound of χ (cf. (2.20)), and Sobolev’s embeddings, we first
infer that

I37(t) =
t∫

0

∫
Ω

θχa · ∇utθt � c

t∫
0

‖θ‖L4(Ω)‖∇ut‖L4(Ω)‖θt‖H

� δ‖θt‖2
L2(0,t;H)

+ c

t∫
0

‖ut‖4
H 2(Ω)

+ c

t∫
0

‖θ‖4
V , (5.2)

for δ > 0 to be chosen later. Analogously, let us handle the second integral as follows

I38(t) =
t∫

0

∫
Ω

θχta · ∇uθt � c

t∫
0

‖θ‖L4(Ω)‖χt‖L∞(Ω)‖∇u‖L4(Ω)‖θt‖H

� δ‖θt‖2
L2(0,t;H)

+ c‖u‖4
L∞(0,t;H 2(Ω))

t∫
‖χt‖4

W + c

t∫
‖θ‖4

V . (5.3)
0 0
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Next, we get

I39(t) =
t∫

0

∫
Ω

(|χt |2 + |∇χt |2 + |∇ut |2
)
θt �

t∫
0

(‖χt‖2
L4(Ω)

+ ‖∇χt‖2
L4(Ω)

+ ‖∇ut‖2
L4(Ω)

)‖θt‖H

� δ‖θt‖2
L2(0,t;H)

+ c

t∫
0

‖χt‖4
W + c

t∫
0

‖ut‖4
H 2(Ω)

. (5.4)

Hence, we combine (5.2)–(5.4) in (5.1), choosing δ sufficiently small (e.g., δ � 1/4). Owing to (2.11), (2.14),
and (2.22), we obtain

‖θt‖2
L2(0,t;H)

+ ∥∥θ(t)
∥∥2

V
� c + c

t∫
0

‖θ‖4
V + c

t∫
0

‖χt‖4
W + c

t∫
0

‖ut‖4
H 2(Ω)

. (5.5)

Now, we differentiate (2.19) with respect to time. We test by utt the resulting equation and integrate over (0, t). On
account of (2.11), (2.13), and (2.14), we have

1

2

∥∥utt (t)
∥∥2

H
+ ‖∇utt‖2

L2(0,t;H)

� 1

2

∥∥utt (0)
∥∥2

H
−

t∫
0

∫
Ω

(χ∇u + aθχ)t · ∇utt

= 1

2

∥∥utt (0)
∥∥2

H
−

t∫
0

∫
Ω

(χt∇u + χ∇ut + aθtχ + aθχt ) · ∇utt

� 1

2

∥∥utt (0)
∥∥2

H
+ c

t∫
0

‖∇utt‖H

(‖χt‖L4(Ω)‖∇u‖L4(Ω) + ‖∇ut‖H + ‖θt‖H + ‖θ‖L4(Ω)‖χt‖L4(Ω)

)
� 1

2

∥∥utt (0)
∥∥2

H
+ 1

2
‖∇utt‖2

L2(0,t;H)
+ c‖u‖2

L∞(0,t;H 2(Ω))
‖χt‖2

L2(0,t;V )

+ c‖θt‖2
L2(0,t;H)

+ c‖∇ut‖2
L2(0,t;H)

+ ‖χt‖2
L∞(0,t;V )‖θ‖2

L2(0,t;V )

� 1

2

∥∥utt (0)
∥∥2

H
+ 1

2
‖∇utt‖2

L2(0,t;H)
+ c‖θt‖2

L2(0,t;H)
+ c. (5.6)

Note that utt (0) is bounded in H by a comparison in (2.19), written for t = 0, thanks to (2.7)–(2.8), (2.22), (2.23),
and (2.25). Hence, using the estimate (5.5) for ‖θt‖2

L2(0,t;H)
, from (5.6) we deduce

∥∥utt (t)
∥∥2

H
+ ‖∇utt‖2

L2(0,t;H)
� c + c

t∫
0

‖θ‖4
V + c

t∫
0

‖χt‖4
W + c

t∫
0

‖ut‖4
H 2(Ω)

. (5.7)

Analogously, let us differentiate (2.17) with respect to time and test the resulting equation by χtt . After integrating
in time, we get

1

2

∥∥χtt (t)
∥∥2

H
+ ‖∇χtt‖2

L2(0,t;H)
+ 1

2

∥∥∇χt (t)
∥∥2

H
� 1

2

∥∥χtt (0)
∥∥2

H
+ 1

2
‖∇χ1‖2

H −
t∫

0

∫
Ω

∇u · ∇utχtt

−
t∫ ∫

a · (θt∇u + θ∇ut )χtt , (5.8)
0 Ω
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where (using a formal notation) the monotonicity of β yields

β(χt )
′χtt = β ′(χt )|χtt |2 � 0.

Now, by a comparison in (2.17), written for t = 0, we have ‖χtt (0)‖H � c, thanks to (2.7)–(2.8), (2.22), (2.23),
and (2.24). Now, we aim to handle the right-hand side of (5.8). On account of (2.11), (2.13), and (2.14), we can
deduce∣∣∣∣∣

t∫
0

∫
Ω

∇u · ∇utχtt

∣∣∣∣∣ �
t∫

0

‖χtt‖L4(Ω)‖∇ut‖H ‖∇u‖L4(Ω)

� 1

4
‖χtt‖2

L2(0,t;V )
+ c

t∫
0

‖∇ut‖2
H ‖u‖2

H 2(Ω)

� 1

4
‖χtt‖2

L2(0,t;V )
+ c. (5.9)

Moreover∣∣∣∣∣
t∫

0

∫
Ω

a · (θt∇u + θ∇ut )χtt

∣∣∣∣∣ � c

t∫
0

(‖θt‖H ‖∇u‖V + ‖θ‖V ‖∇ut‖H

)‖χtt‖V

� 1

4
‖χtt‖2

L2(0,t;V )
+ c

t∫
0

(‖θt‖2
H ‖u‖2

H 2(Ω)
+ ‖∇ut‖2

H ‖θ‖2
V

)
� 1

4
‖χtt‖2

L2(0,t;V )
+ c‖θt‖2

L2(0,t;H)
+ c. (5.10)

Combining (5.9)–(5.10) in (5.8), we eventually obtain∥∥χtt (t)
∥∥2

H
+ ‖χtt‖2

L2(0,t;V )
� c + c‖θt‖2

L2(0,t;H)

� c + c

t∫
0

‖θ‖4
V + c

t∫
0

‖χt‖4
W + c

t∫
0

‖ut‖4
H 2(Ω)

, (5.11)

where the last inequality in (5.11) is derived from the estimate (5.5) for ‖θt‖2
L2(0,t;H)

.
Now, by comparison in (2.19), taking (2.13)–(2.14) into account, we obtain∥∥�ut(t)

∥∥2
H

� c
∥∥utt (t)

∥∥2
H

+ c
∥∥χ(t)

∥∥2
L∞(Ω)

∥∥�u(t)
∥∥2

H
+ c

∥∥∇χ(t)
∥∥2

L4(Ω)

∥∥∇u(t)
∥∥2

L4(Ω)

+ c
∥∥∇χ(t)

∥∥2
L4(Ω)

∥∥θ(t)
∥∥2

L4(Ω)
+ c

∥∥χ(t)
∥∥2

L∞(Ω)

∥∥∇θ(t)
∥∥2

H

� c + c
∥∥utt (t)

∥∥2
H

+ c
∥∥θ(t)

∥∥2
V

� c + c

t∫
0

‖θ‖4
V + c

t∫
0

‖χt‖4
W + c

t∫
0

‖ut‖4
H 2(Ω)

, (5.12)

where the last row in (5.12) is derived from the estimate (5.5) for ‖θ(t)‖2
V and from the estimate (5.7) for ‖utt (t)‖2

H .
Analogously, we test (2.17) by −�χt(t). Observe firstly that

∫
Ω

ξ(−�χt) is non-negative for a.a. t (cf. (3.17)).
Then, owing to (2.13)–(2.14), (5.5) and (5.11), we get∥∥�χt(t)

∥∥2
H

� c
∥∥χtt (t)

∥∥2
H

+ c
∥∥�χ(t)

∥∥2
H

+ ∥∥∇u(t)
∥∥4

L4(Ω)
+ c

∥∥∇u(t)
∥∥2

L4(Ω)

∥∥θ(t)
∥∥2

L4(Ω)
+ c

� c + c

t∫
‖θ‖4

V + c

t∫
‖χt‖4

W + c

t∫
‖ut‖4

H 2(Ω)
. (5.13)
0 0 0
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Finally, we add (5.5), (5.12), and (5.13); we apply a generalized version of Gronwall’s lemma (see, e.g., [17, p. 33])
and we conclude that there exists T̂ , with T̂ ∈ (0, τ ] such that the following upper bounds hold

‖θ‖H 1(0,T̂ ;H)∩L∞(0,T̂ ;V ) � c, (5.14)

‖u‖W 2,∞(0,T̂ ;H)∩H 2(0,T̂ ;V0)∩W 1,∞(0,T̂ ;H 2(Ω)) � c, (5.15)

‖χ‖W 2,∞(0,T̂ ;H)∩H 2(0,T̂ ;V )∩W 1,∞(0,T̂ ;W) � c. (5.16)

We complete the proof of the regularity of θ and ξ observing that

‖θ‖L2(0,T̂ ;W) � c

by comparison in (2.16) and

‖ξ‖L∞(0,T̂ ;H) � c

by comparison in (2.17), owing to (5.14)–(5.16).
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