@article{AIHPC_2008__25_1_77_0, author = {Majumdar, A. and Robbins, J. M. and Zyskin, M.}, title = {Energies of ${S}^{2}$-valued harmonic maps on polyhedra with tangent boundary conditions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {77--103}, publisher = {Elsevier}, volume = {25}, number = {1}, year = {2008}, doi = {10.1016/j.anihpc.2006.11.003}, mrnumber = {2383079}, zbl = {1141.35005}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.003/} }
TY - JOUR AU - Majumdar, A. AU - Robbins, J. M. AU - Zyskin, M. TI - Energies of ${S}^{2}$-valued harmonic maps on polyhedra with tangent boundary conditions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 77 EP - 103 VL - 25 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.003/ DO - 10.1016/j.anihpc.2006.11.003 LA - en ID - AIHPC_2008__25_1_77_0 ER -
%0 Journal Article %A Majumdar, A. %A Robbins, J. M. %A Zyskin, M. %T Energies of ${S}^{2}$-valued harmonic maps on polyhedra with tangent boundary conditions %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 77-103 %V 25 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.003/ %R 10.1016/j.anihpc.2006.11.003 %G en %F AIHPC_2008__25_1_77_0
Majumdar, A.; Robbins, J. M.; Zyskin, M. Energies of ${S}^{2}$-valued harmonic maps on polyhedra with tangent boundary conditions. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 1, pp. 77-103. doi : 10.1016/j.anihpc.2006.11.003. http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.003/
[1] Handbook of Mathematical Functions, Dover Publications, 1965.
, ,[2] Tres observaciones sobre el algebra lineal, Univ. Nac. Tacumán Rev. Ser. A 5 (1946) 147-151. | MR | Zbl
,[3] The interplay between analysis and topology in some nonlinear PDE problems, Bull. Amer. Math. Soc. 40 (2006) 179-201. | MR | Zbl
,[4] Harmonic maps with defects, Comm. Math. Phys. 107 (1986) 649-705. | MR | Zbl
, , ,[5] Flexoelectric switching in a bistable nematic device, Phys. Rev. E 65 (2002) 051710.
, ,[6] The Physics of Liquid Crystals, second ed., Oxford University Press, 1995.
, ,[7] Flexoelectric surface switching of bistable nematic devices, Phys. Rev. Lett. 87 (2001) 275505.
, ,[8] Harmonic Maps Between Riemannian Polyhedra, Cambridge Tracts in Mathematics, vol. 142, Cambridge University Press, 2001. | MR | Zbl
, ,[9] Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publ. IHES 76 (1992) 165-246. | Numdam | MR | Zbl
, ,[10] Singularities of harmonic maps, Bull. Amer. Math. Soc. 34 (1997) 15-34. | MR | Zbl
,[11] J.C. Jones, J.R. Hughes, A. Graham, P. Brett, G.P. Bryan-Brown, E.L. Wood, Zenithal bistable devices: Towards the electronic book with a simple LCD, In: Proc IDW, 2000, pp. 301-304.
[12] Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states, Appl. Phys. Lett. 80 (2002) 3635-3637.
, ,[13] Points, Lines and Walls, John Wiley and Sons, Chichester, 1983. | MR
,[14] Soft Condensed Matter, Springer, 2002.
, ,[15] Topological defects in dispersed liquid crystals, or words and worlds around liquid crystal drops, Liquid Crystals 24 (1998) 117-125.
,[16] On nematic liquid crystal droplets, in: Elliptic and Parabolic Methods in Geometry, A.K. Peters, 1996, pp. 91-121. | MR | Zbl
, ,[17] A. Majumdar, Liquid crystals and tangent unit-vector fields in polyhedral geometries, PhD thesis, University of Bristol, 2006.
[18] Elastic energy of liquid crystals in convex polyhedra, J. Phys. A 37 (2004) L573-L580, J. Phys. A 38 (2005) 7595. | MR | Zbl
, , ,[19] Lower bound for energies of harmonic tangent unit-vector fields on convex polyhedra, Lett. Math. Phys. 70 (2004) 169-183. | MR | Zbl
, , ,[20] Elastic energy for reflection-symmetric topologies, J. Phys. A 39 (2006) 2673-2687. | MR | Zbl
, , ,[21] Topology and bistability in liquid crystal devices, math-ph/0611016.
, , ,[22] The topological theory of defects in ordered media, Rev. Mod. Phys. 51 (C) (1979) 591-651. | MR | Zbl
,[23] C.J.P. Newton, T.P. Spiller, Bistable nematic liquid crystal device modelling, In: Proc. 17th IDRC (SID), 1997, p. 13.
[24] Classification of unit-vector fields in convex polyhedra with tangent boundary conditions, J. Phys. A 37 (2004) 10609-10623. | MR | Zbl
, ,[25] The Static and Dynamic Continuum Theory of Liquid Crystals, Taylor and Francis, London, 2004.
,[26] Variational Theories for Liquid Crystals, Chapman and Hall, 1994. | MR | Zbl
,[27] Topological dynamics of defects - boojums in nematic drops, Sov. Phys. JETP 58 (1983) 1159.
, ,[28] M. Zyskin, Homotopy classification of director fields on polyhedral domains with tangent and periodic boundary conditions, Preprint, 2005.
Cité par Sources :