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Abstract

A unit-vector field n :P → S2 on a convex polyhedron P ⊂ R
3 satisfies tangent boundary conditions if, on each face of P ,

n takes values tangent to that face. Tangent unit-vector fields are necessarily discontinuous at the vertices of P . We consider fields
which are continuous elsewhere. We derive a lower bound E−

P
(h) for the infimum Dirichlet energy Einf

P
(h) for such tangent unit-

vector fields of arbitrary homotopy type h. E−
P

(h) is expressed as a weighted sum of minimal connections, one for each sector

of a natural partition of S2 induced by P . For P a rectangular prism, we derive an upper bound for Einf
P

(h) whose ratio to the
lower bound may be bounded independently of h. The problem is motivated by models of nematic liquid crystals in polyhedral
geometries. Our results improve and extend several previous results.
© 2006 Elsevier Masson SAS. All rights reserved.

MSC: 35A15; 35A20; 35J50; 35J65; 55P15; 58E20; 82D30

Keywords: Harmonic maps with defects; Tangent boundary conditions; Minimal connection; Liquid crystals; Bistability

1. Introduction

S2-valued harmonic maps on three-dimensional domains with holes were studied in a well known paper by Brezis,
Coron and Lieb [4]. As a simple representative example, consider the domain Ω = R

3 − {r1, . . . , rn} (for which the
holes are points), and let n :Ω → S2 denote a unit-vector field on Ω . For ∇n square-integrable, we define the Dirichlet
energy of n to be

E(n) =
∫
Ω

(∇n)2 dV. (1.1)
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Continuous unit-vector fields on Ω may be classified up to homotopy by their degrees, d = (d1, . . . , dn) ∈ Z
n, on

spheres about each of the excluded points (the restriction of n to such a sphere may be regarded as a map from S2 into
itself). In order that n have finite energy, we must have that∑

j

dj = 0. (1.2)

Let CΩ(d) denote the homotopy class of continuous unit-vector fields with degrees d satisfying (1.2), and let HCΩ(d)

denote the elements of CΩ(d) with finite Dirichlet energy. Let Einf
Ω (d) denote the infimum of the energy over HCΩ(d),

Einf
Ω (d) = inf

n∈HCΩ(d)
E(n). (1.3)

It turns out that Einf
Ω (d) is just 8π times the length of a minimal connection on Ω . We recall the definition of a

minimal connection. Given two m-tuples of points in R
3, P = (a1, . . . ,am) and N = (b1, . . . ,bm) (whose points need

not be distinct), a connection is a pairing (aj ,bπ(j)) of points in P and N , specified here in terms of a permutation
π ∈ Sm (Sm denotes the symmetric group). The length of a connection is the sum of the distances between the paired
points, and a minimal connection is a connection with minimum length. Let

L(P,N ) = min
π∈Sm

m∑
j=1

∣∣aj − bπ(j)
∣∣ (1.4)

denote the length of a minimal connection between P and N . Let |d| = 1
2

∑
j |dj |. Then

Theorem 1.1. [4] The infimum Einf
Ω (d) of the Dirichlet energy of continuous unit-vector fields on the domain Ω =

R
3 − {r1, . . . , rn} of given degrees dj about the excluded points rj is given by

Einf
Ω (d) = 8πL

(
P(d),N (d)

)
, (1.5)

where P(d) is the |d|-tuple of excluded points of positive degree, with rj included dj times, and N(d) is the |d|-tuple
of excluded points of negative degree, with rk included |dk| times.

In this paper we consider a natural variant of this problem which emerges from a boundary-value problem of some
physical and technological interest; the domain is taken to be a polyhedron on which n is required to satisfy tangent
boundary conditions. Let P denote a convex bounded polyhedron in R

3, including the interior of the polyhedron
but excluding its vertices. Let n :P → S2 denote a unit-vector field on P . We say that n satisfies tangent boundary
conditions, or is tangent, if, on each face of P , n takes values tangent to that face. (It is clear that this condition could
not be satisfied at the vertices of the polyhedron, which belong to three or more faces.)

One motivation for the problem comes from liquid crystals applications, in which n describes the mean local
orientation of a nematic liquid crystal, and the Dirichlet energy (1.6) coincides with the elastic or Frank–Oseen en-
ergy in the so-called one-constant approximation (see, e.g., [6,26,14,25]). Polyhedral cells have been proposed as a
mechanism for engendering bistability – they may support two nematic configurations with distinct optical properties,
both of which are local minima of the elastic energy [11,23,12,7,5,21]. In many cases of interest the orientation at
interfaces is well described by tangent boundary conditions, and low-energy local minimisers appear to have different
topologies. We also remark that harmonic maps between Riemannian polyhedra have been studied by Gromov and
Shoen [9] and Eells and Flugede [8], in particular in cases where the target manifold has nonpositive curvature.

Here we will restrict our attention to continuous tangent unit-vector fields on P . (Let us note that, while nematic
orientation is, in general, described by a director, or RP 2-valued field, a continuous director field on a simply con-
nected domain such as P can be lifted to a continuous unit-vector field.) Continuous tangent unit-vector fields on P

can be partitioned into homotopy classes CP (h) labelled by a complete set of homotopy invariants denoted collectively
by h. A full account of this classification is given in [24] (see also [28]). Below we reprise the results we need here.
General discussions of topological defects in liquid crystals are given in [22,13,14].

For ∇n square integrable on P , let

E(n) =
∫

(∇n)2 dV (1.6)
P
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denote its Dirichlet energy. Let HCP (h) denote the elements of CP (h) with finite Dirichlet energy, and let

Einf
P (h) = inf

n∈HCP (h)
E(n) (1.7)

denote the infimum of the energy over HCP (h). Our first result (Theorem 1.2 below) is a lower bound for Einf
P (h).

This is expressed in terms of certain homotopy invariants called wrapping numbers, which we now define. Let f

denote the number of faces of P , Fc the cth face of P , and Fc the outward normal on Fc , where 1 � c � f . For
each face we consider the great circle on S2 containing the unit-vectors s tangent to it, i.e. Fc · s = 0. These f (not
necessarily distinct) great circles partition S2 into open spherical polygons, which we call sectors. The sectors are
characterised by sgn(Fc · s). We write

Sσ = {
s ∈ S2 | sgn

(
s · Fc

) = σ c
}
, (1.8)

where σ = (σ 1, . . . , σ f ) is an f -tuple of signs. It should be noted that most of the Sσ ’s are empty; indeed, reckoning
based on Euler’s formula for polygonal partitions of the sphere (|vertices| − |edges| + |faces| = 2) shows that there
are at most (and generically) f 2 − f + 2 nonempty sectors.

Next, let Ca denote a smooth surface in P which separates the vertex va from the others. For definiteness, take Ca

to be oriented so that va lies on the positive side of Ca . We call Ca a cleaved surface. Given n ∈ CP (h), let na denote
its restriction to Ca . The wrapping number waσ is the number of times na covers Sσ , counted with orientation. For n
differentiable, this is given by

waσ = 1

Aσ

∫
Ca

n∗(χσ ω
)
, (1.9)

where ω is the area two-form on S2, normalised to have integral 4π , χσ is the characteristic function of Sσ ⊂ S2, and
Aσ = | ∫

S2 χσ ω| is the area of Sσ . Alternatively, waσ can be expressed as the index of a regular value s ∈ Sσ of na ,
i.e.

waσ =
∑

r|na(r)=s

sgn det dna(r). (1.10)

One can show that waσ does not depend on the choice of s ∈ Sσ nor on the choice of cleaving surface Ca , that
the definition (1.9) can be extended to continuous n, and that its value depends only on the homotopy class of n
[24]. In fact, the wrapping numbers constitute a complete set of invariants, as is shown in Appendix A. They are not
independent, however. For example, continuity in the interior of P (absence of singularities) implies that, for all σ ,∑

a

waσ = 0, (1.11)

where the sum is taken over vertices va . Continuity on the faces and edges of P implies additional constraints. We
will say that h = {waσ } is an admissible topology if it can be realised by some continuous configuration n :P → S2.

Theorem 1.2. Let h = {waσ } be an admissible topology for continuous tangent unit-vector fields on a polyhedron P .
Then

Einf
P (h) � E−

P (h) :=
∑
σ

2Aσ L
(
Pσ (h),N σ (h)

)
, (1.12)

where Pσ (resp. N σ ) contains the vertices of P for which waσ is positive (resp. negative), each such vertex included
with multiplicity |waσ |.

Thus, to each sector σ may be associated a constellation of point defects at the vertices va of degrees waσ . The
lower bound E−

P (h) is a sum of the lengths of minimal connections for these constellations weighted by the areas of
the sectors.

Theorem 1.2 is proved using arguments similar to those used to show that Einf
Ω (d) � 8πL(P(d),N (d)) in the proof

of Theorem 1.1. In Theorem 1.1, one obtains an equality for Einf
Ω (d), rather than just a lower bound, by constructing

a sequence n(j) whose energies approach 8πL(P(d),N (d)). It can be shown that a subsequence n(k) approaches a
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constant away from a minimal connection while |∇n(k)|2 approaches a singular measure supported on the minimal
connection [4]. In the present case, tangent boundary conditions preclude such a construction; n is required to vary
across the faces and, therefore, throughout the interior of P . However, for P a rectangular prism, we can show that
E−

P (h) correctly describes the dependence of the infimum energy on homotopy type.

Theorem 1.3. Let P denote a rectangular prism with sides of length Lx � Ly � Lz and largest aspect ratio κ =
Lx/Lz. Then

Einf
P (h) � Cκ3E−

P (h) (1.13)

for some constant C independent of h and Lx , Ly , Lz.

The upper bound of Theorem 1.3 is obtained by estimating the energy of explicitly constructed tangent unit-vector
fields which satisfy the Euler–Lagrange equations near each vertex.

The general form of the Frank–Oseen energy is given by [6,26,14,25]

EFO(n) =
∫
P

[
K1(div n)2 + K2(n · curl n)2 + K3(n × curl n)2 + K4 div

(
(n · ∇)n − (div n)n

)]
dV, (1.14)

where the elastic constants Kj are material-dependent. It is easily shown that tangent boundary conditions imply
that the contribution from the K4-term in (1.14) vanishes. The elastic constants K1, K2 and K3 are constrained to
be nonnegative, and the one-constant approximation (1.6) follows from taking K1 = K2 = K3 = 1. We remark that
Theorems 1.2 and 1.3 imply the following bounds for the Frank–Oseen energy:

K−E−
P (h) � inf

n∈HCP (h)
EFO(n) � CK+κ3E−

P (h), (1.15)

where K− (resp. K+) is the smallest (resp. largest) of the elastic constants K1, K2 and K3.
Theorems 1.2 and 1.3 improve and extend several earlier results. In [19] we obtained a lower bound for Einf

P (h) of
the form

2 max
ξa

∑
a

ξa

(∑
σ

Aσ waσ

)
, (1.16)

where the maximum is taken over ξa’s such that |ξa − ξb| � |va − vb|. The quantity (1.16) is generally less than
the lower bound given by Theorem 1.2, in particular because it allows for cancellations between wrapping numbers
of opposite sign. For example, for a regular tetrahedron with sides of unit length, (1.16) gives a lower bound of∑

aσ Aσ waσ , whereas Theorem 1.2 gives the lower bound
∑

aσ Aσ |waσ |. For a rectangular prism, Theorem 1.3 does
not hold if (1.16) is substituted for E−

P (h). ((1.16) can be directly compared to (2.15) below, which gives an equivalent
(dual) expression for E−

P (h).) A restricted example of Theorem 1.2 was given in [20] for the case h is a reflection-
symmetric topology. These are the topologies of configurations which are invariant under reflections through the
midplanes of the prism.

Results related to Theorem 1.3 were obtained for the special case of reflection-symmetric topologies in [18,20].
The constructions and estimates are simpler in this case, and one can show that the ratio of the upper and lower bounds
scales linearly with the aspect ratio κ , rather than as κ3. Indeed, for conformal and anticonformal reflection-symmetric
topologies (for which the wrapping numbers waσ about a given vertex have the same sign), one can show that the
ratio is bounded by (L2

x + L2
y + L2

z)
1/2/Lz. It is not clear that for general prism topologies the κ3 dependence in

Theorem 1.3 is optimal.
An important question is whether within a given homotopy class the infimum Dirichlet energy is achieved. The

homotopy classes HCP (h) are not weakly closed with respect to the Sobolev norm, so it is not automatically the
case that the infimum is achieved. However, while a given HCP (h) may not be weakly closed, it may still contain a
local (smooth) minimiser of the Dirichlet energy. Indeed, there is some numerical evidence and heuristics to suggest
that, in the case of a rectangular prism, for the simplest topologies a smooth minimiser always exists, while for others
a smooth local minimiser may or may not exist depending on the aspect ratios [18,17]. It would be interesting to
establish for which topologies there exist smooth local minimisers, also from the point of view of device applications.
Such configurations would of course satisfy the bounds established here.
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There is an extensive literature on S2-valued harmonic maps with fixed (Dirichlet) boundary data; reviews are
given in [10,3]. Problems related to the one considered here concern liquid crystal droplets [15,26], in which one
seeks configurations n on a three-dimensional region Ω which minimise the elastic energy [16]. In case of tangent
boundary conditions, there are necessarily singularities on the surface of Ω , e.g. ‘boojums’ [27]; in a polyhedral
domain, these singularities are pinned at the vertices.

The remainder of the paper is organised as follows. Theorem 1.2 is proved in Section 2, and Theorem 1.3 in
Section 3 modulo two lemmas concerning the explicit construction of and estimates for the representative prism
configurations (Sections 4 and 5). In Appendix A it is shown that homotopy classes of continuous tangent unit-vector
fields on P are classified by wrapping numbers.

2. Lower bound for general polyhedra

Proof of Theorem 1.2. In [19] we show that smooth n’s are dense in HCP (h) with respect to the Sobolev
W(1,2)-norm. Therefore, it suffices to establish the lower bound (1.12) for n smooth.

Let Bε(va) denote the ε-ball about va , and let

Pε = P −
⋃
a

(
Bε

(
va

) ∩ P
)

(2.1)

denote the domain obtained by excising these balls from P . Clearly

E(n) =
∫
P

(∇n)2 dV �
∫
Pε

(∇n)2 dV. (2.2)

Let χσ denote the characteristic function of the sector Sσ ⊂ S2. It will be useful to introduce smooth approximations
χ̃σ to χσ , such that χ̃σ has support in Sσ and satisfies 0 � χ̃σ � χσ . Then

E(n) �
∑
σ

∫
Pε

(
χ̃σ ◦ n

)
(∇n)2 dV. (2.3)

Using the inequality [4]

(∇n)2 � 2‖n∗ω‖, (2.4)

where n∗ω denotes the pullback of ω by n and ‖ · ‖ denotes the norm on forms induced by the standard metrics on R
3

and S2, we get that

E(n) � 2
∑
σ

∫
Pε

∥∥n∗(χ̃σ ω
)∥∥dV. (2.5)

For each σ , let ξσ denote a continuous piecewise-differentiable function on P with∥∥dξσ
∥∥ � 1. (2.6)

Then for arbitrary a, b, c, we have that

‖n∗ω‖∣∣dV (a,b, c)
∣∣ �

(
dξσ ∧ n∗ω

)
(a,b, c), (2.7)

where dV is here regarded as the Euclidean volume form on R
3. But

dξσ ∧ n∗(χ̃σ ω
) = d

(
ξσ n∗(χ̃σ ω

))
, (2.8)

since d(n∗(χ̃σ ω)) = n∗d(χ̃σ ω) = 0 (χ̃σ ω is a two-form on S2). Therefore,

E(n) � 2
∑
σ

∫
Pε

d
(
ξσ n∗(χ̃σ ω

))
. (2.9)

From Stokes’ theorem, (2.9) implies that

E(n) � 2
∑
σ

∫
ξσ n∗(χ̃σ ω

)
. (2.10)
∂Pε
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The boundary of Pε consists of (i) the faces of P with points in Bε(va) removed, and (ii) the intersections of the
two-spheres ∂Bε(va) with P . The latter, denoted by Ca

ε = ∂Bε(va) ∩ P , we call cleaved surfaces. Tangent boundary
conditions imply that n∗ω vanishes on the faces of P (since the values of n on a face are restricted to a great circle
in S2). Therefore, only the cleaved surfaces contribute to the integral in (2.10). We obtain

E(n) � 2
∑
σ

∑
a

∫
Ca

ε

ξσ n∗(χ̃σ ω
)
. (2.11)

We can replace χ̃σ by χσ in (2.11) (by the bounded convergence theorem). Taking the limit ε → 0, we obtain

E(n) � 2
∑
σ

∑
a

ξσ
(
va

)
lim
ε→0

∫
Ca

ε

n∗(χσ ω
)
. (2.12)

From (1.9), the integral over Ca
ε yields Aσ times the wrapping number waσ , which depends only on the homotopy

type of n. Thus,

Einf
P (h) � 2

∑
σ

Aσ
∑
a

ξσ
(
va

)
waσ . (2.13)

The remainder of the argument proceeds as in [4]. We note that (2.13) holds for any choice of ξσ ’s consistent with
the constraints (2.6). These constraints imply that∣∣ξσ

(
va

) − ξσ
(
vb

)∣∣ �
∣∣va − vb

∣∣. (2.14)

Conversely, given any set of values ξaσ for which |ξaσ − ξbσ | � |va − vb|, we can find functions ξσ which satisfy the
constraints (2.6) and assume these values at the vertices (for example, take ξσ (r) = maxa(ξ

aσ − |r − va|)). Thus, we
obtain a lower bound for EP (h) in terms of the solutions of a finite number of linear optimisation problems, one for
each sector,

Einf
P (h) � 2

∑
σ

Aσ

(
max

|ξaσ −ξbσ |�|va−vb|

∑
a

ξaσ waσ

)
. (2.15)

A simpler characterisation is provided by the dual formulation,

Einf
P (h) � 2

∑
σ

Aσ

(
min
Ωab,σ

∑
a,b

∣∣va − vb
∣∣Ωab,σ

)
, (2.16)

where the Ωab,σ ’s are constrained by∑
a

Ωab,σ = −wbσ ,
∑

b

Ωab,σ = waσ . (2.17)

Let us fix σ . Without loss of generality, we can restrict Ωab,σ to be nonnegative and equal to zero unless waσ > 0
and wbσ < 0. Suppose first that the nonzero wrapping numbers are either +1 or −1; by (1.11) there are an equal
number, m say, of each. Therefore, the nonvanishing elements of Ωab,σ may be identified with an m × m matrix,
which we denote by M . (2.17) implies that M is doubly stochastic. By a theorem of Birkhoff [2], M can be expressed
as a convex linear combination of permutation matrices. Then the minimum in (2.16) is necessarily achieved at an
extremal point, i.e. for M a permutation matrix corresponding to a minimal connection. In this case,

min
Ωab,σ

∑
a,b

∣∣va − vb
∣∣Ωab,σ = L

(
Pσ (h),N σ (h)

)
, (2.18)

where Pσ (h) (resp. Nσ (h)) contains vertices va for which waσ equals +1 (resp. −1). The case of general nonzero
wrapping numbers values is treated by including va with multiplicity |waσ | in either Pσ (h) (for waσ > 0) or Nσ (h)

(for waσ < 0). The same argument applies in every sector (there is a separate minimal connection for each σ ), and
(1.12) follows. �
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3. Upper bound for rectangular prisms

Let P denote a rectangular prism centred at the origin of three-dimensional Euclidean space. We take the edges of
P to be parallel to the coordinate axes and of lengths Lx , Ly , Lz, oriented so that Lx � Ly � Lz. It will be convenient
to introduce the half-lengths

lj = Lj

2
(3.1)

(here and in what follows, the index j takes values x, y or z). Then the vertices of P are of the form

va = (±lx,±ly,±lz), (3.2)

where the vertex label a designates the signs in (3.2).
Let Oa ⊂ S2 denote the spherical octant of directions about va which are contained in P . E.g., for va =

(−lx,−ly,−lz), Oa is the positive octant {s ∈ S2 | sj � 0}. The boundary of Oa , ∂Oa , contains the directions which
lie in the faces at va , and is composed of quarter-segments of the great circles about x̂, ŷ and ẑ. Let ∂Oa

j denote the

segment about ĵ.
Choose l so that 0 < l � lz. Then va + lOa is contained in P , so that va + lOa is a cleaved surface. Given

n ∈ CP (h), we can define a unit-vector field νa on Oa by

νa(s) = n
(
va + ls

)
. (3.3)

Tangent boundary conditions imply that, for s ∈ ∂Oa
j , νa(s) is orthogonal to ĵ. Denote the set of νa’s collectively

by ν. The wrapping numbers of n, and hence its homotopy type, are determined by ν. ν is an example of an octant
configuration, which we define generally as follows:

Definition 3.1. An octant configuration ν with admissible topology h = {waσ } is a set of continuous piecewise-smooth
maps νa :Oa → S2 satisfying tangent boundary conditions,

s ∈ ∂Oa
j �⇒ ν(s) · ĵ = 0, (3.4)

such that∫
Oa

ν∗(χσ ω
) = waσ Aσ . (3.5)

The Dirichlet energy of an octant configuration ν on the octant Oa is defined by

Ea
(2)(ν) =

∫
Oa

(∇νa
)2

(s)dΩa. (3.6)

Here and in what follows, it will be convenient to regard ∇νa
j (s) (the gradient of the j th component of νa) as a vector

in R
3 which is tangent to Oa at s. dΩa in (3.6) denotes the area element on Oa (normalised so that Oa has area π/2).

The Dirichlet energy on the octant edge ∂Oa
j is given by

Ea
(1)j (ν) =

π/2∫
0

(
d

dα
νa

(
sa
j (α)

))2

dα. (3.7)

Here, sa
j (α) denotes the parameterisation of ∂Oa

j by arclength (i.e., angle) α. For example, if va = (−lx,−ly,−lz),

sa
j (α) = cosαk̂ + sinαl̂, 0 � α � π

2
, (3.8)

where (j, k, l) denote a triple of distinct indices.
By an extension of an octant configuration ν, we mean a continuous, piecewise-smooth unit-vector field n on P

such that n(va + ls) = νa(s) for all s ∈ Oa . Obviously, if ν has topology h, so has its extension n. We introduce the
following notation: Given functions f and g on a domain W , we write f � g to mean there exists a constant C such
that |f | � C|g| on W . In this case, we say that f is dominated by g.
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Lemma 3.1. Let ν be an octant configuration with admissible topology h. Then ν can be extended to a continuous
piecewise-differentiable configuration n ∈HCP (h) such that

E(n) � κ3Lz

(∑
a

Ea
(2)(ν) +

∑
aj

(
Ea

(1)j (ν)
)1/2

)
. (3.9)

Theorem 1.3 is proved by constructing octant configurations whose Dirichlet energies on the octants and their
edges scale appropriately with the wrapping numbers. These configurations are provided by the following:

Lemma 3.2. Given an admissible topology h = {waσ }, there exists an octant configuration ν with topology h such
that ∑

a

Ea
(2)(ν) �

∑
aσ

∣∣waσ
∣∣, (3.10)∑

aj

Ea
(1)j (ν) �

∑
aσ

∣∣waσ
∣∣2

. (3.11)

The proofs of Lemmas 3.1 and 3.2, which involve explicit constructions and estimates, are given in Sections 4 and
5 respectively.

Proof of Theorem 1.3. Given an admissible topology h = {waσ }, we choose an octant configuration ν with topology
h as in Lemma 3.2, and extend it to a unit-vector field n on P as in Lemma 3.1. From the Cauchy–Schwartz inequality,
(3.11) implies that∑

aj

(
Ea

(1)j (ν)
)1/2 �

∑
aσ

∣∣waσ
∣∣. (3.12)

Together, (3.9), (3.10) and (3.12) provide an estimate for E(n), and therefore an upper bound for Einf
P (h),

Einf
P (h) � E(n) � κ3Lz

∑
aσ

∣∣waσ
∣∣. (3.13)

From Theorem 1.2, a lower bound for Einf
P (h) is given by

E−
P (h) =

∑
σ

2
π

2
L

(
P σ (h),Nσ (h)

)
(3.14)

(Aσ = π/2 for a rectangular prism). The minimum distance between vertices of P is Lz. As the number of elements
of P σ (h) (and of Nσ (h)) is 1

2

∑
a |waσ |, it follows that

L
(
P σ (h),Nσ (h)

)
� 1

2
Lz

∑
a

∣∣waσ
∣∣. (3.15)

From (3.13) and (3.15), we conclude that

Einf
P (h) � κ3E−

P (h). � (3.16)

We remark that the octant configurations of Lemma 3.2 must be chosen with some care, as the following example
illustrates (details may be found in [17]). For simplicity, take P to be the unit cube. In the (positive) octant about
va = (− 1

2 ,− 1
2 ,− 1

2 ), let

νa(θ,φ) = (sinα cosβ, sinα sinβ, cosα), (3.17)

where 0 � θ,φ � π/2 and α = (4M +1)θ , β = (4N +1)φ for integers M and N . Given (x, y, z) ∈ P with x, y, z � 0,
let (θ,φ) denote the polar angles of (x, y, z) with respect to va , and let n(x, y, z) = νa(θ,φ). We define n elsewhere
via n(±x, y, z) = n(x,±y, z) = n(x, y,±z) = n(x, y, z) (so that n is a reflection-symmetric configuration [18,20]).
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Then n is continuous and satisfies tangent boundary conditions. Denote its homotopy class by hMN . It is straightfor-
ward to compute the wrapping numbers (it turns out that they scale linearly with M and N ), and, from Theorem 1.2,
to obtain the following lower bound:

E−
P (hMN) = (

2 max(M + 2N,2M + N) + 1
)π

4
. (3.18)

It turns out that E(n) can be evaluated exactly as a finite sum of Appell hypergeometric functions. For large M

and N , the energy is given asymptotically by

E(n) ∼ 4
√

3

(
(4M + 1)2 + 1

2
lnM(4N + 1)2

)
π

2
. (3.19)

Clearly E(n) does not scale linearly with M and N , so is not dominated by the lower bound E−
P (hMN).

4. Extending octant configurations

Let us specify the geometry of the prism P in greater detail. Let

ma
(j) = va − va

j ĵ (4.1)

denote the midpoint of the edge through va along ĵ (here, va
j is the j th component of va). Let Ca denote the triangle

whose vertices are the midpoints of the edges coincident at va ,

Ca =
{

r = τxma
(x) + τyma

(y) + τzma
(z)

∣∣∣ τj � 0,
∑
j

τj = 1

}
. (4.2)

We call Ca a cleaved face (see Fig. 1). c ∈ Ca satisfies

Ca · c = 2, (4.3)

where

Ca = ((
va
x

)−1
,
(
va
y

)−1
,
(
va
z

)−1) (4.4)

is an (unnormalised) outward normal on Ca . Let h denote the distance from Ca to the origin. Then

2

3
lz � h = 2

|Ca| < 2lz. (4.5)

Let Fjτ , where τ = ±1, denote face of the prism which lies in the plane {rj = τ lj }. Let F̂ jτ ⊂ Fjτ denote the
rhombus whose vertices lie at the midpoints of the edges of Fjτ . We call F̂ jτ a truncated face (see Fig. 1).

We partition P into three sets of pyramids, denoted Xa , Ya and Zjτ . Xa and Ya have the cleaved face Ca as their
(shared) base. Xa has its apex at va , while Ya has its apex at the origin. Zjτ has the truncated face F̂ jτ as its base
and its apex at the origin. Every point of P belongs either to the interior of just one of these pyramids or else to the
boundary between two or more of them (see Fig. 1).

In the proof of Lemma 3.1, we define n, the extension of the octant configuration ν, to be constant along rays from
Ca to the origin (apart from a small neighbourhood thereof) and along rays to va . We then show that the energy of n
in Xa and Ya is proportional to Ea

(2)(ν). The construction of n in Zjτ is more complicated. On ∂F̂ jτ (the boundary

of the base), n is determined by ν, and in the interior of F̂ jτ , we define n by a simple interpolation which respects
tangent boundary conditions. In the interior of Zjτ , we do not take n to be constant along rays from the apex to the
base, as this would give rise to an energy proportional to

∑
va∈Fjτ Ea

(1)j (ν), which, for the octant configurations of
Lemma 3.2, would scale as the square of the wrapping numbers. Instead, along such rays, and over a distance

σ =
(

π
∑

va∈Fjτ

(
Ea

(1)j (ν)
))−1/2

, (4.6)

n is rotated toward the normal ĵ. This leads to an energy in Zjτ proportional to 1/σ .
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(a) (b) (c)

(d) (e)

Fig. 1. (a) The cleaved plane Ca , (b) the pyramid Xa , (c) the pyramid Ya , (d) the truncated face Fjτ , (e) the pyramid Zjτ .

Proof of Lemma 3.1. Given an octant configuration ν, we define an extension n on the pyramids Xa , Ya and Zjτ

(Steps 1–3) with Dirichlet energies EXa(n), EYa (n) and EZjτ (n) bounded as follows:

EXa(n) � 1

2
κLzE

a
(2)(ν), (4.7a)

EYa (n) � κ3LzE
a
(2)(ν), (4.7b)

EZjτ (n) � κ2Lz

∑
va∈Fjτ

(
Ea

(1)j (ν)
)1/2

. (4.7c)

Then

E(n) =
∑
a

(
EXa(n) + EYa (n)

) +
∑
jτ

EZjτ (n)

� κ3Lz

(∑
a

Ea
(2)(ν) +

∑
aj

(
Ea

(1)j (ν)
)1/2

)
. (4.8)

To ensure continuity (Step 4) we modify the construction of n near the origin while preserving the bounds (4.7).
Step 1. Construction in Xa . From (4.2) and (4.3), points in Xa are of the form va + rs, where s ∈ Oa and 0 < r �

ra(s) with

ra(s) = 1

|Ca · s| ; (4.9)

ra(s) is the distance from va to Ca along s. The maximal distance is half the length of the longest edge, so that

ra(s) � ra(x̂) = lx . (4.10)

We define n in Xa by

n
(
va + rs

) = νa(s), s ∈ Oa, 0 < r � ra(s). (4.11)

Then, from (3.6) and (4.10),

EXa(n) :=
∫
Xa

(∇n)2 dV =
∫
Oa

ra(s)
(∇νa(s)

)2 dΩa � lxE
a
(2)(ν) � 1

2
κLzE

a
(2)(ν), (4.12)

as in (4.7a).
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Step 2. Construction in Ya . Points in Ya (excluding the origin) are of the form λc, where c ∈ Ca and 0 < λ � 1.
We define n in Ya by

n(λc) = n(c). (4.13)

Note that n(c) is fixed in Step 1, since Ca belongs to Xa as well as Ya .
To estimate EYa (n), we resolve ∇n into components tangent and normal to the cleaved face Ca ,

∇n = ∇tn + ∇nn, (4.14)

so that (Ca · ∇t )n = 0 and (t · ∇n)n = 0 for t tangent to Ca . From (4.13), ∇tn(λc) = λ−1∇tn(c). Therefore,(∇tn(λc)
)2 = 1

λ2

(∇tn(c)
)2

. (4.15)

To estimate (∇nn)2, we note that (c · ∇)n(λc) = 0 (n is constant along rays in Ya through the origin) and resolve c
into components ct and cn tangent and normal to Ca to obtain(∇nn(λc)

)2 � |ct |2
|cn|2

(∇tn(λc)
)2 � |ct |2

|cn|2
1

λ2

(∇tn(c)
)2

. (4.16)

Since (∇tn(c))2 � (∇n(c))2, (4.15) and (4.16) together give(∇n(λc)
)2 = |c|2

|cn|2
1

λ2

(∇n(c)
)2

. (4.17)

Clearly |c| � lx while |cn| is just h, the distance from Ca to the origin, and h > 2lz/3 (cf. (4.5)), so that(∇n(λc)
)2 � 9

4
κ2 1

λ2

(∇n(c)
)2

. (4.18)

The volume element on Ya is given by

dV = hλ2 d2c dλ, (4.19)

where d2c is the Euclidean area element on Ca . Since h < 2lz,

EYa (n) =
∫
Ya

(∇n)2 dV <
9

2
κ2lz

∫
Ca

(∇n)2(c)d2c. (4.20)

Letting s = (c − v)/|c − v|, we can write the preceding as an integral over Oa . We have that

d2c = |c|2
|s · Ca|/|Ca| dΩa,

(∇n(c)
)2 = 1

|c|2
(∇νa(s)

)2
, (4.21)

and

|Ca|
|s · Ca| <

3/lz

1/lx
= 3κ, (4.22)

so that (4.20) becomes

EYa (n) � 27

2
κ3lz

∫
Oa

(∇νa(s)
)2 dΩa � κ3LzE

a
2 (ν), (4.23)

as in (4.7b).
Step 3. Construction in Zjτ . To simplify the discussion and the notation, let us fix our attention on the top face

of the prism, with j = z and τ = 1, and henceforth drop the designation jτ , writing Z for Zjτ , F̂ for F̂ jτ , etc, in
what follows (the other faces are handled similarly). ∂F̂ may be parameterised as R(φ) = (R(φ) cosφ,R(φ) sinφ, lz),
where

R(φ) = lx ly
(4.24)
ly | cosφ| + lx | sinφ|
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and φ is the polar angle about the z-axis. On ∂F̂ (which is also contained in the cleaved faces), n is defined in Step 1.
It follows that n is continuous on ∂F̂ (including the midpoints of the edges of F , which belong to two cleaved faces,
as ν has an admissible topology) and satisfies tangent boundary conditions there. Tangent boundary conditions imply
that

n
(
R(φ)

) = ε cos
(
Θ(φ)

)
ŷ + sin

(
Θ(φ)

)
x̂, (4.25)

where Θ(φ) may be taken to be continuous and piecewise smooth, with Θ(2π) − Θ(0) equal to a multiple of 2π .
Since ν has an admissible topology, we must have Θ(2π) = Θ(0). ε = ±1 can be chosen so that

Θ(0) = Θ(2π) = 0. (4.26)

We introduce polygonal cylindrical coordinates (h, ξ,φ) on Z, defined by

x = hξR(φ) cosφ, y = hξR(φ) sinφ, z = lzh, 0 < h � 1, 0 � ξ � 1, 0 � φ < 2π. (4.27)

ξ , the radial coordinate, is scaled to equal 1 on the sides of Z and 0 along the z-axis. Then let

N(2)(ξ,φ) = ε cos(ξΘ)ŷ + sin(ξΘ)x̂. (4.28)

N(2) gives a continuous extension of n to the interior of F̂ which satisfies tangent boundary conditions. A continuous
extension to the interior of Z is given by

N(h, ξ,φ) = cosγ N(2) + sinγ ẑ, (4.29)

where γ = γ (h, ξ) is given by

γ (h, ξ) = Φ

(
1 − h

σ

)
Φ

(
1 − ξ

σ

)
π

2
, Φ(s) =

{
s, s < 1,

1, s � 1,
(4.30)

and 0 < σ < 1. Thus, γ vanishes on the boundary of Z and has a constant value, π/2, at interior points sufficiently
far from the boundary. σ , which determines how far, will be specified below. We define n on Z as

n
(
x(h, ξ,φ), y(h, ξ,φ), z(h, ξ,φ)

) = N(h, ξ,φ). (4.31)

It is readily checked that (4.31) agrees with (4.13) at points on the boundary of Z except at the origin.
The energy of n in Z is given by EZ(n) as follows. In terms of the coordinates (h, ξ,φ), we have that

EZ(n) =
∫
Z

(∇n)2 dV

=
1∫

0

dh

1∫
0

dξ

2π∫
0

dφ
∣∣(∇ξ × ∇φ) · ∇h

∣∣−1
(Nh∇h + Nξ∇ξ + Nφ∇φ)2, (4.32)

where Nh = ∂N/∂h, Nξ = ∂N/∂ξ , etc. From (4.28) and (4.29), we get that

Nh = γh(cosγ ẑ − sinγ N(2)),

Nξ = γξ (cosγ ẑ − sinγ N(2)) + εΘ cosγ N(2) × ẑ,

Nφ = εξΘ ′ cosγ N(2) × ẑ. (4.33)

From (4.27), we get that

∇h = (0,0,1/lz),

∇ξ = ξ
(
(R cosφ + R′ sinφ)/(ρR), (R sinφ − R′ cosφ)/(ρR),−1/(lzh)

)
,

∇φ = (− sinφ, cosφ,0)/ρ, (4.34)

where ρ = (x2 + y2)1/2 = hξR. Straightforward calculation then gives an expression for EZ(n) of the form

EZ(n) =
5∑

i=1

Ei =
5∑

i=1

1∫
dh

1∫
dξ

2π∫
dφ Ii, (4.35)
0 0 0



A. Majumdar et al. / Ann. I. H. Poincaré – AN 25 (2008) 77–103 89
where the integrands for the separate contributions Ei are given by

I1 = lz cos2 γ ξΘ ′2, I2 = h2

lz
γ 2
h ξR2, I3 = −2

h

lz
γhγξ ξ

2R2,

I4 = −2εlz cos2 γ ξ
R′

R
ΘΘ ′, I5 =

(
lzξ

(
1 + R′2

R2

)
+ ξ3

lz
R2

)(
cos2 γΘ2 + γ 2

ξ

)
. (4.36)

We consider these contributions in turn.
Concerning E1, since cos2 γ vanishes for 0 < ξ,h < 1 − σ (cf. (4.30)), it follows that

E1 � 2lzσ

2π∫
0

Θ ′2(φ)dφ. (4.37)

The integral of Θ ′2(φ) can be related to the Dirichlet edge energies Ea
(1)z(ν) for the vertices va which lie on F . For

convenience, label these anticlockwise by a = 0,1,2,3 so that

n
(
R(φ)

) = νa
(
sa
z

(
α(φ)

))
, (a − 1)π/2 < φ < aπ/2, (4.38)

where sa
z (α) parameterises the octant edge ∂Oa

z as in (3.8), and α(φ) is given by

tanα =
{

(lx/ ly)
2 tanφ, 0 � φ < π/2 or π � φ < 3π/2,

(ly/ lx)
2 tanφ, π/2 � φ < π or 3π/2 � φ < 2π.

(4.39)

(φ is the angle with respect to the centre of F and α, with 0 < α < π/2, the angle with respect consecutive vertices.
(4.39) gives the elementary relation between them. See also Fig. 2.) Recalling (4.25), we get that

Θ ′2(φ) =
(

d

dφ
n
(
R(φ)

))2

=
(

d

dα
νa

(
sa
z (α)

))2∣∣∣∣
α=α(φ)

(
dα

dφ

)2

. (4.40)

It follows that
2π∫

0

Θ ′2(φ)dφ =
∑

va∈F

π/2∫
0

(
d

dα
νa

(
sa
z (α)

))2(dφ

dα

)−1

dα. (4.41)

From (4.39) one has that∣∣∣∣(dφ

dα

)−1∣∣∣∣ � l2
x

l2
y

� κ2. (4.42)

Therefore,

2π∫
0

Θ ′2(φ)dφ � κ2
∑

va∈F

Ea
(1)z(ν). (4.43)

Fig. 2. The angles α and φ.
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Substituting into (4.37), we get

E1 � κ2lzσ
∑

va∈F

Ea
(1)z(ν). (4.44)

Next we consider

E2 =
1∫

0

dh
h2

lz

1∫
0

dξ ξγ 2
h

2π∫
0

dφ R2. (4.45)

From (4.24), R(φ) � lx , and from (4.30), |γh| vanishes for h < 1 − σ and is bounded by π/(2σ) for h > 1 − σ .
Therefore,

E2 <
π3

4

l2
x

lz

1

σ
� κ2lz

1

σ
. (4.46)

We estimate E3 similarly; noting that |γξ | vanishes for ξ < 1 − σ and is bounded by π/(2σ) for ξ > 1 − σ , we obtain

|E3| � κ2lz
1

σ
. (4.47)

E4 is given by

E4 = −2εlz

1∫
0

dh

1∫
0

dξ ξ cos2 γ

2π∫
0

dφ ΘΘ ′ R′

R
. (4.48)

We consider the φ-integral first. From the Cauchy–Schwartz inequality,∣∣∣∣∣
2π∫

0

ΘΘ ′ R′

R
dφ

∣∣∣∣∣ �
( 2π∫

0

Θ2 dφ

)1/2( 2π∫
0

Θ ′2
(

R′

R

)2

dφ

)1/2

. (4.49)

In the first factor on the right-hand side, note that, from (4.25) and (4.38),

∣∣Θ(φ)
∣∣ �

∑
va∈F

π/2∫
0

∣∣∣∣( d

dα
νa

(
sa
z (α)

))∣∣∣∣dα, for 0 � φ � 2π. (4.50)

The Cauchy–Schwartz inequality then implies that

Θ2(φ) � 2π
∑

va∈F

Ea
(1)z(ν), for 0 � φ � 2π. (4.51)

In the second factor on the right-hand side of (4.49), we have that |R′/R| � κ (cf. (4.24)), so it follows from (4.43)
that

2π∫
0

Θ ′2
(

R′

R

)2

dφ � κ4
∑

va∈F

Ea
(1)z(ν). (4.52)

Substituting (4.51) and (4.52) into (4.49), we get that∣∣∣∣∣
2π∫

0

ΘΘ ′ R′

R
dφ

∣∣∣∣∣ � κ2
∑

va∈F

Ea
(1)z(ν). (4.53)

We substitute (4.53) into (4.48) and recall that cos2 γ vanishes for 0 < ξ,h < 1 − σ to get that

|E4| � κ2lzσ
∑
a

Ea
(1)z(ν). (4.54)
v ∈F
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Finally, we consider

E5 =
1∫

0

dh

1∫
0

dξ

2π∫
0

dφ
(
cos2 γΘ2 + γ 2

ξ

)(
lzξ

(
1 + R′2

R2

)
+ ξ3

lz
R2

)
. (4.55)

Let us first estimate the φ-dependent terms. From (4.24), we have that R � κlz and |R′/R| � κ , while (4.51) provides
a bound for Θ2(φ). Substituting into (4.55), we get that

E5 � 2πlz

1∫
0

dh

1∫
0

dξ

(
2π cos2 γ

∑
va∈F

Ea
(1)z(ν) + γ 2

ξ

)(
ξ
(
1 + κ2) + ξ3κ2). (4.56)

Recalling that cos2 γ and γ 2
ξ vanish for 0 < ξ,h < 1 − σ while γ 2

ξ is bounded by π/(2σ), we obtain the bound

E5 � 4πlzσ

(
2π

∑
va∈F

Ea
(1)z(ν) + π2

4σ 2

)(
1 + 2κ2)

� κ2lzσ

( ∑
va∈F

Ea
(1)z(ν)

)
+ κ2lz

1

σ
. (4.57)

We substitute the estimates (4.37), (4.46), (4.47), (4.54) and (4.56) for Ei into (4.35), and take

σ =
(

π
∑

va∈F

Ea
(1)z(ν)

)−1/2

. (4.58)

We can verify that σ < 1 as follows: Tangent boundary conditions imply that, for φ a multiple of π/2 (i.e., for R(φ)

belonging to an edge of F ), Θ(φ) = π/2 mod 2π . Then (4.51) implies that∑
va∈F

Ea
(1)z � π

8
,

so that σ <
√

8/π < 1. Then (4.57) and (4.58) give

EZ � κ2lz

( ∑
va∈F

Ea
(1z)

)1/2

� κ2lz
∑

va∈F

(
Ea

(1z)

)1/2
, (4.59)

as in (4.7c). The same estimate may be carried out for the other pyramids Zjτ . Different lengths lj appear as appro-
priate, but since ratios of lengths are bounded by κ , (4.59) holds generally.

Step 4. Continuity. As defined, n is continuous everywhere except at the origin. Here we modify n in a small
neighbourhood of the origin to remove the discontinuity while preserving the estimate (4.7).

From the definitions (4.13) and (4.31) of n in Ya and Zjτ , n(r) is radially constant in the ball Bδ about the origin
of radius δ = (1 − σ)lz. Let γ :S2 → S2 denote the restriction of n to ∂Bδ , given by

γ (s) = n(δs), s ∈ S2. (4.60)

Let

E(2)(γ ) =
∫
S2

(∇γ )2 dΩ (4.61)

denote the Dirichlet energy of γ . Then, for 0 < ε < 1, the energy of n in the εδ-ball about the origin is given by

EBεδ (n) = εδE(2)(γ ). (4.62)

γ is piecewise smooth, and, since ν has an admissible topology, of degree zero. It follows that γ is smoothly
homotopic to a constant map. Let Γ s denote a homotopy, so that Γ 1(s) = γ (s) and Γ 0(s) = s0. Let g be the unit-
vector field on Bδ given by

g(rs) = Γ r/δ(s), (4.63)
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and let EBδ (g) denote its Dirichlet energy. For 0 < ε < 1, we define gε to be the unit-vector field on Bεδ given by

gε(r) = g(r/ε). (4.64)

Then the energy of gε in the εδ-ball about the origin is given by

EBεδ (gε) = εEBδ (g). (4.65)

For any 0 < ε < 1 we can redefine n on Bεδ , taking it to be gε there, and leaving n unchanged elsewhere. It is clear
that n as redefined is continuous and piecewise smooth. From (4.62) and (4.65), the redefinition changes its energy by
ε(EBδ (g) − δE(2)(γ )). As ε can be made arbitrarily small, the estimates (4.7) remain valid. �
5. Constructing octant configurations

For definiteness, we consider the configuration on a particular octant, namely the positive octant about the vertex
(−lx,−ly,−ly); the treatment for the other octants is analogous. To simplify the notation, we will drop the ver-
tex label a. Hence, throughout this section, we write O = {s ∈ S2 | sj � 0} for the positive octant (instead of Oa),
ν :O → S2 for the configuration on O (instead of νa), wσ instead of waσ , etc. With reference to (3.6) and (3.7), we
let

E(2)(ν) =
∫
O

(∇ν)2(s)dΩ, (5.1)

E(1)j (ν) =
π/2∫
0

(
dν

dα

)2(
sj (α)

)
dα, (5.2)

where dΩ denotes the area element on O and

sj (α) = cosαk̂ + sinαl̂ (5.3)

denotes the parameterisation of ∂Oj . Lemma 3.2 follows from showing that

E(2)(ν) �
∑
σ

∣∣wσ
∣∣, (5.4)∑

j

E(1)j (ν) �
∑
σ

∣∣wσ
∣∣2

, (5.5)

as analogous relations hold for the other octants. Before establishing (5.4) and (5.5) in Section 5.3, we first review
the topological characterisation of octant configurations (Section 5.1) and their representation by complex functions,
particularly conformal representatives (Section 5.2).

5.1. Topological characterisation

As discussed in [24] (in the context of general convex polyhedra) and in [18,20] (for a rectangular prism), the homo-
topy class of ν :O → S2 may be characterised by certain invariants, namely the edge signs, denoted e = (ex, ey, ez),
kink numbers, denoted k = (kx, ky, kz) and trapped area, denoted Ω . Here we recall the definitions of these invariants
and some relevant results for prisms; details may be found in the references.

Tangent boundary conditions imply that ν(ĵ) is parallel to ĵ; the edge sign ej determines their relative sign, i.e.

ν(ĵ) = ej ĵ. (5.6)

Tangent boundary conditions also imply that along sj (α), ν takes values in the (kl)-plane. The integer-valued kink
number kj counts the number of windings of ν in this plane relative to the minimum possible winding (a net rotation
of ±π/2), for which kj = 0. The trapped area Ω is the oriented area of the image of ν, given by

Ω =
∫

ν∗ω. (5.7)
O
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For a rectangular prism, the sectors are octants of S2 labelled by a triple of signs σ = (σx, σy, σz), with Sσ =
{s ∈ S2 | sgn(s · ĵ) = σj }. The wrapping numbers wσ may be expressed in terms of (e, k,Ω), as follows [24,20]:

wσ = 1

4π
Ω + 1

2

∑
j

σj kj + 1

8
e∗(1 − 8δσe), (5.8)

where δσe equals one if σ = e and is zero otherwise. Note that (5.8) implies that

Ω = −2π
∑
j

σj kj − e∗π/2 mod 4π, (5.9)

where

e∗ = exeyez. (5.10)

(5.8) may be inverted to obtain (e, k,Ω) in terms of the wrapping numbers,

et = −
∑
σ

σrσsw
σ , for r , s, t distinct, (5.11)

kr = 1

4

∑
σ

σrw
σ + 1

4
ere∗, (5.12)

Ω =
∑
σ

π

2
wσ . (5.13)

(Similar relations are described for a general polyhedron in Appendix A.)
A topology for a prism configuration n may be specified as a set of edge signs, kink numbers and trapped areas

for each vertex. The conditions for the topology to be admissible (i.e., realisable by a configuration continuous away
from the vertices) are readily expressed in terms of (e, k,Ω); pairs of edge signs associated with a single edge must
be compatible, the absence of surface singularities implies sum rules for the kink numbers on each face of the prism,
and the absence of interior singularities implies a sum rule for the trapped areas.

We say that an octant topology (e, k,Ω) is conformal (resp. anticonformal) if every nonzero wrapping number
is negative (resp. positive). From (5.8), one can show that (e, k,Ω) is conformal (resp. anticonformal) if and only if
Ω � −Ω−(e, k) (resp. Ω � Ω+(e, k)), where

Ωe∗(e, k) = 2π
∑
j

|kj | + 2π

{+ 7
4 , if e∗ej kj � 0 for all j,

− 1
4 , otherwise.

(5.14)

Ω−e∗(e, k) = 2π
∑
j

|kj | − 2π

{+ 7
4 , if e∗ej kj > 0 for all j,

− 1
4 , otherwise.

If (Ω, e, k) is an octant topology, then Ω differs from Ω+(e, k) or Ω−(e, k) by some multiple of 4π (i.e., some
number of whole coverings of the sphere). If Ω = Ω±(e, k), then (e, k,Ω) has at least one wrapping number equal to
zero.

5.2. Conformal configurations

ν :O → S2 can be represented by a complex function F(w,w) in the standard way via the stereographic projection
S2 → C

∗ (C∗ is the extended complex plane),

F

(
sx + isy
1 + sz

,
sx − isy
1 + sz

)
=

(
νx + iνy

1 + νz

)
(s). (5.15)

The domain of F is the positive quarter-unit disk (the image of O under the projection),

Q = {
w ∈ C | 0 � Rew � 1, 0 � Imw � 1, |w| � 1

}
. (5.16)
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Letting wj(α) denote the projections of the parameterised boundaries sj (α) of ∂Oj , we have that

wx(α) = tan(α/2), wy(α) = i
(
1 − tan(α/2)

)
, wz = eiα. (5.17)

A standard calculation gives

(∇ν)2 = 4
|Fw|2 + |Fw|2
(1 + |F |2)2

, (5.18)

so that (cf. (5.1) and (5.2))

E(2)(ν) =
∫
Q

4
|∂wF |2 + |∂wF |2

(1 + |F |2)2
d2w, (5.19)

E(1)j (ν) =
π/2∫
0

4

( |∂wF |2 + |∂wF |2
(1 + |F |2)2

)(
wj(α)

)∣∣∣∣dwj

dα
(α)

∣∣∣∣2

dα. (5.20)

Of particular interest are configurations for which F is conformal (a function of w only) or anticonformal. For
definiteness we will consider the conformal case, and write F(w,w) = f (w). If f has a meromorphic extension to
the extended complex plane, then tangent boundary conditions imply that f is real when w is real, f is imaginary
when w is imaginary, and |f | = 1 when |w| = 1. It follows that if w∗ is a zero of f , then so are −w∗ and ±w∗, while
±1/w∗ and ±1/w∗ are poles. Therefore, f is in fact a rational function of the form

f = λwnABC. (5.21)

Here, A contains the real zeros and poles of f , B the imaginary zeros and poles, and C the strictly complex zeros and
poles. n is an odd integer giving the order of the zero or pole at the origin, and λ = ±1 is an overall sign. A, B and C

may be written explicitly as

A(w) =
a∏

j=1

(
w2 − r2

j

r2
j w2 − 1

)ρj

, (5.22a)

B(w) =
b∏

k=1

(
w2 + s2

k

s2
kw2 + 1

)σk

, (5.22b)

C(w) =
c∏

l=1

(
(w2 − t2

l )(w2 − t̄
2
l )

(t2
l w2 − 1)(t̄

2
l w

2 − 1)

)τl

. (5.22c)

Here, a is the number of real zeros and poles in Q (excluding the origin), b the number of imaginary zeros and
poles in Q (excluding the origin), and c the number of strictly complex zeros and poles in Q. rj , with 0 < rj < 1,
denotes the real zeros (ρj = 1) and poles (ρj = −1); similarly, isk , with 0 < sk < 1 and σk = ±1, denote the imaginary
zeros and poles, and tl , with 0 < |tl | < 1, Re tl , Im tl > 0 and τl = ±1 denote the strictly complex zeros and poles.

In terms of these parameters, the edge signs, kink numbers and trapped area of conformal configurations are given
by [18,20]

ex = λ(−1)a, ey = λ(−1)b(−1)(n−1)/2, ez = sgnn, (5.23)

kx = −1

2
(−1)bey

(
b∑

k=1

(−1)kσk + 1

2

(
1 − (−1)b

)
ez

)
,

ky = −1

2
(−1)aex

(
a∑

j=1

(−1)jρj + 1

2

(
1 − (−1)a

)
ez

)
, (5.24)

kz = 1

4
(exey − n) − 1

2

a∑
ρj − 1

2

b∑
σk −

c∑
τl,
j=1 k=1 l=1
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Ω = −1

2

(|n| + 2(a + b) + 4c
)
π. (5.25)

The expressions for the edge signs follow from evaluating f at 1, i and 0, while the formula for Ω follows from noting
that 8Ω is just (−4π times) the degree of f , which for a meromorphic function is the number of its zeros counted
with multiplicity. The formulas for the kink numbers require a bit more calculation; details are given in [20].

It is easily checked that a conformal configuration f (w) has a conformal octant topology (f is orientation-
preserving, which implies that the nonzero wrapping numbers are negative). Therefore, octant topologies which are
neither conformal nor anticonformal, i.e. (e, k,Ω) for which −Ω−(e, k) < Ω < Ω+(e, k), cannot be realised by
F = f (w) or F = f (w). In [20] we establish a converse result, namely that every conformal (resp. anticonformal)
octant topology has a conformal (resp. anticonformal) representative.

5.3. Proof of Lemma 3.2

Proof. Given an admissible topology h for P , let (e, k,Ω) denote the associated octant topology on O with wrapping
numbers wσ . We construct ν, or rather its complex representative F(w,w), with topology (e, k,Ω) in Step 1. We
establish the estimate (5.4) for E(2)(ν) in Step 2. We then show that

E(1)j (ν) � 1 + k2
j (5.26)

for j = z (Step 3) and j = x, y (Step 4). From (5.9), Ω �= 0. (5.13) then implies that the wrapping numbers cannot all
vanish, so that, from (5.12),∑

j

1 + |kj |2 �
∑
σ

∣∣wσ
∣∣2

. (5.27)

The bound (5.5) for
∑

j E(1)j (ν) then follows from (5.26) and (5.27).
Step 1. Definition of F . In general, the octant topology (e, k,Ω) is neither conformal nor anticonformal. We will

take F to be conformal outside a small disk in Q with conformal topology (e, k,Ω∗). Inside the disk, F is made to
cover the complex plane (Ω − Ω∗)/(4π) times; this will ensure that F has the required topology.

Let

Ω∗ = −2π

(∑
j

|kj | + 1 − 3

4
e∗

)
. (5.28)

Using (5.14), one can check that Ω∗ is equal to either −Ω−(e, k) or −(Ω−(e, k) − 4π ; in either case, (e, k,Ω∗) is a
conformal octant topology. Denoting its wrapping numbers by wσ∗ , it follows that wσ∗ � 0 and, from (5.8) and (5.14),
that at least one of its wrapping numbers either vanishes or is equal to −1;∣∣wσ0∗

∣∣ � 1 for some σ0. (5.29)

An explicit conformal representative f (w) with octant topology (e, k,Ω∗) of the form (5.21) and (5.22) is obtained
by taking

n = (2 − e∗)ez, λ = ex,

a = 2|ky |, ρj = −(−1)j ex sgn ky, 1 � j � a,

b = 2|kx |, σk = −(−1)key sgnkx, 1 � k � b,

c = |kz| + 1

2
(1 − e∗), τl =

{− sgn kz, l � |kz|,
−ez, l = |kz| + 1,

(5.30)

as can be verified from (5.23)–(5.25). (The reason for introducing Ω∗ – we could use −Ω−(e, k) instead – is that
conformal representatives for (e, k,−Ω−(e, k)) entail several special cases.) Let

4πm = Ω − Ω∗(e, k). (5.31)

Then, from (5.9), m is an integer, and from (5.8),

wσ = wσ∗ + m. (5.32)
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If m = 0, we let

F(w,w) = f (w). (5.33)

Otherwise, let w0 denote a regular point of f in the interior of Q, and let Dε(w0) denote the open ε-disk about w0.
Choose ε sufficiently small so that D2ε(w0) is contained in Q and contains no poles of f . Let

s(w,w) = |w − w0| − ε

ε
(5.34)

(so that s varies between 0 and 1 as |w − w0| varies between ε and 2ε). Then for m > 0 we define

F(w,w) =
{

f (w), |w − w0| � 2ε,

sf (w) + (1 − s)(f (w0) + (w − w0)
m), ε < |w − w0| < 2ε,

f (w0) + ε2m(w − w0)
−m, |w − w0| � ε,

(5.35a)

while for m < 0 we define

F(w,w) =
{

f (w), |w − w0| � 2ε,

sf (w) + (1 − s)(f (w0) + (w − w0)
−m), ε < |w − w0| < 2ε,

f (w0) + ε−2m(w − w0)
m, |w − w0| � ε.

(5.35b)

F coincides with f on ∂Q, so that F has the same edge signs and kink numbers as f , namely e and k. Let us
verify that F has trapped area Ω . For m = 0 this is automatic. Otherwise, for definiteness, suppose that m > 0 (the
case m < 0 is treated similarly). From (5.7) and (5.15) one can show that

Ω(F) =
∫
Q

4
|∂wF |2 − |∂wF |2

(1 + |F |2)2
d2w. (5.36)

Divide the domain of integration as in (5.35). The contribution from |w − w0| > 2ε is, to O(ε2), just the trapped area
of f , namely Ω∗(e, k). Consider next the contribution from Dε(w0). From (5.35), F(Dε(w0)) covers the extended
complex plane m times with positive orientation, apart from an εm-disk about f (w0). It follows that its contribution to
the integral in (5.36) is, to within O(ε2m) corrections, 4πm. The remaining contribution, from the annulus D2ε(w0)−
Dε(w0), is O(ε2). This is because the area of the annulus is O(ε2), while the integrand in (5.36) may be bounded
independently of ε (since, by assumption, f has no poles in D2ε(w0)). Since the trapped area is an odd multiple of
π/2 (cf. (5.9)), it follows that, for small enough ε, F has trapped area Ω∗(e, k) + 4πm = Ω .

Clearly the topology of F does not depend on the positions of the zeros and poles of f . As will be evident in Step 2
below, neither does the octant energy E(2)(ν), at least to leading order in ε. However, the edge energies, E(1)j (ν), do
depend on the positions of the zeros and poles. As will be evident in Steps 3 and 4, to obtain good control of the edge
energies, the a real and b imaginary zeros and poles in Q should be kept away from the origin, the unit circle and
each other, while the c strictly complex zeros and poles should be kept close to the unit circle and away from the real
and imaginary axes and each other. Anticipating these requirements, in (5.22) we take

rj = 1

4
+ j

2a
, sk = 1

4
+ k

2b
, tl =

(
1 − 1

c + 1

)1/2

eiαl ,
αl

π
= 1

8
+ l

4(c + 1)
. (5.37)

These imply the properties

1

4
< rj � 3

4
, rj+1 − rj = 1

2a
, (5.38a)

1

4
< sk � 3

4
, sk+1 − sk = 1

2b
, (5.38b)

π

8
< αl � 3π

8
, 1 − |tl |2 = 1

c + 1
(5.38c)

which will be useful in what follows. We note that, with rj and ρj as given in (5.30) and (5.37), the real zeros and
poles of f alternate along the interval (0,1]; similarly, with sk and σk as given in (5.30) and (5.37), the imaginary
zeros and poles alternate along (0, i].
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Step 2. Estimate of E(2)(ν). The expression (5.19) for E(2)(ν) differs from the expression (5.36) for Ω only in the
relative sign of the w- and w-derivative terms. Arguing as for (5.36), we see that, to order ε2, the contributions to
E(2)(ν) from Q − D2ε(w0), D2ε(w0) − Dε(w0), and Dε(w0) are, respectively, |Ω∗|, 0 and 4π |m|. Therefore,

E(2)(ν) � |Ω∗| + 4π |m| =
∑
σ

∣∣wσ∗
∣∣π

2
+ 4π |m|, (5.39)

where we have used (5.13) and the fact that wσ∗ � 0. From (5.32), |wσ∗ | � |wσ | + |m|. Also, from (5.29) and (5.32),
|m| = |wσ0 − w

σ0∗ | � |wσ0 | + 1 � 2
∑

σ |wσ |. Substituting these results into (5.39), we get that

E(2)(ν) �
∑
σ

∣∣wσ
∣∣. (5.40)

verifying (5.4).
Step 3. Estimate of E(1)z(ν). On ∂Oz, F = f and |f | = 1. Also, from (5.17), |dwz/dα| = 1. Therefore, from (5.20),

E(1)z(ν) =
π/2∫
0

∣∣∣∣f ′

f

∣∣∣∣2(
eiα)

dα. (5.41)

Below we show that∣∣∣∣f ′

f

∣∣∣∣(eiα)
� 1 + |kz|, (5.42)

which then yields the required estimate (5.26) for j = z.
To verify (5.42), we note that, from (5.21),∣∣∣∣f ′

f

∣∣∣∣ = |n| +
∣∣∣∣A′

A

∣∣∣∣ +
∣∣∣∣B ′

B

∣∣∣∣ +
∣∣∣∣C′

C

∣∣∣∣. (5.43)

From the expression (5.22a) for A and the positions (5.38a) of its zeros and poles one calculates that

A′

A
(w) = ±w

a

a/2∑
J=1

(
r2J−1 + r2J

(w2 − r2
2J−1)(w

2 − r2
2J )

+ r2J−1 + r2J

(r2
2J−1w

2 − 1)(r2
2J w2 − 1)

)
. (5.44)

From (5.38a), |r2J + r2J−1| � 3/2 while, for w ∈ ∂Oz, we have that |w2 − r2
j |, |r2

j w2 − 1| � 1/16. Therefore,∣∣∣∣A′

A

∣∣∣∣(w) �
a/2∑
J=1

1

a
� 1, w ∈ ∂Oz. (5.45)

A similar calculation (cf. (5.22b) and (5.38b)) shows that∣∣∣∣B ′

B

∣∣∣∣(w) � 1, w ∈ ∂Oz. (5.46)

It remains to estimate C′/C. Without loss of generality, we may assume that c > 0 (otherwise, C = 1 and C′ = 0).
From (5.22c) and (5.38c),

C′

C

(
eiα) = 2e−iα 1

c + 1

c∑
l=1

τl

(
(1 + |tl |2)
|e2iα − t2

l |2 + (1 + |tl |2)
|e2iα − t̄

2
l |2

)
. (5.47)

Write the denominators (5.47) as∣∣e2iα − t̄
2
l

∣∣2 = (
1 − |tl |2

)2 + 4|tl |2 sin2(αl + α),∣∣e2iα − t2
l

∣∣2 = (
1 − |tl |2

)2 + 4|tl |2 sin2(αl − α). (5.48)

From (5.38c), one has that 1 − |tl |2 = 1/(c + 1) while, for 0 � α � π/2, we have that π/8 � α + αl � 7π/8 and
−π/2 < α − αl < π/2, so that
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∣∣e2iα − t̄
2
l

∣∣2 � sin2
(

π

8

)
,

∣∣e2iα − t2
l

∣∣2 � 1

(c + 1)2
+ 8

π2
(αl − α)2 (5.49)

(we have used (π/2) sin |x| > |x| for |x| � π/2). Substituting (5.49) into (5.47) and using αl = π/8 + lπ/(4(c + 1))

(cf. (5.37)) and 1 + |tl |2 < 2 (cf. (5.38c)), we get that∣∣∣∣C′

C

(
eiα)

∣∣∣∣ � 2

c + 1

c∑
l=1

(
2(c + 1)2

1 + 1
2 (l − (c + 1)(4α/π − 1

2 ))2
+ 2

sin2 π/8

)

� (c + 1)

c∑
l=0

1

1 + l2
+ 1 � c + 1. (5.50)

We substitute (5.45), (5.46) and (5.50) into (5.43) to get that |f ′/f | � c + 1 + |n| on ∂Oz. Since c is equal to |kz| or
|kz| + 1 and |n| � 3 (cf. (5.30)), the required estimate (5.42) follows.

Step 4. Estimate of E(1)x(ν) and E(1)y(ν) . We establish (5.26) for j = x and j = y. For definiteness, we consider
E(1)x(ν), and show that

E(1)x(ν) � 1 + |kx |2 (5.51)

(the calculations for E(1)y(ν) are essentially the same). On ∂Ox , F = f , f is real and, from (5.17), dwx/dα =
1
2 sec2 α/2 � 1 for 0 � α � π/2. It will be convenient to parameterise ∂Ox by 0 � w � 1 rather than by α. (5.17) and
(5.20) give that

E(1)x(ν) = 4

1∫
0

f ′2

(1 + f 2)2

∣∣∣∣dwx

dα

∣∣∣∣dw � 4

1∫
0

f ′2

(1 + f 2)2
dw. (5.52)

The estimate (5.51) requires more calculation than the corresponding result for j = z. It turns out that a pointwise
bound on the integrand in (5.52) is not sufficient, as f ′2/(1 + f 2)2 � |kx |3 on ∂Ox . The domain on which f ′2/(1 +
f 2)2 � |kx |3 has measure of order 1/|kx |, in keeping with (5.51). But it will be necessary to estimate the integral
in (5.52) itself. We note in passing that the complex representation (5.15) does not incorporate the cubic symmetries
of the octant O in a simple way. Projecting along the axis (1,1,1)/

√
3 rather than ẑ would treat the boundaries

symmetrically, and might lead to a simplification of the calculations below.
To proceed, we collect the zeros and poles of f along ∂Ox into a factor q (see (5.61) below for its explicit

expression), writing

f = pq, (5.53)

where

p = ÃBC = λ

a∏
j=1

(
w + rj

r2
j w2 − 1

)ρj

BC (5.54)

has no zeros or poles for 0 � w � 1. We have that∣∣∣∣ f ′

1 + f 2

∣∣∣∣ =
∣∣∣∣ p′

p(pq + 1/(pq))
+ p

q ′

1 + p2q2

∣∣∣∣ � 1

2

∣∣∣∣p′

p

∣∣∣∣ + max

(
|p|, 1

|p|
)∣∣∣∣ q ′

1 + q2

∣∣∣∣, (5.55)

since |pq| + 1/|pq| � 2, and

1 + p2q2 �
{

1 + q2, |p| � 1,

p2(1 + q2), |p| � 1.
(5.56)

With calculations similar to those in Step 3 (details are omitted), one shows that |(logp)′| is bounded on ∂Ox inde-
pendently of kj , i.e.∣∣∣∣p′ ∣∣∣∣ � 1, 0 � w � 1. (5.57)
p
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From (5.22) and (5.54), if a = 0 then p(0) = ±1, i.e. log |p(0)| = 0. If a �= 0, using (5.37) we get that

∣∣(log
∣∣p(0)

∣∣)∣∣ =
a/2∑
J=1

∣∣∣∣log
r2J−1

r2J

∣∣∣∣ =
a/2∑
J=1

∣∣log
(
1 − 2/(a + 4J )

)∣∣
<

a/2∑
J=1

4/(a + 4J ) <

2a∫
0

dx/(a + x) � ln 3, (5.58)

so that, in general, |(log |p(0)|)| � 1. Then (5.57) and (5.58) imply that, for 0 � w � 1,

∣∣(log
∣∣p(w)

∣∣)∣∣ �
∣∣log

(∣∣p(0)
∣∣)∣∣ +

w∫
0

|p′/p|dw′ � 1,

or

max
(|p|,1/|p|) � 1, 0 � w � 1. (5.59)

Substituting (5.59) and (5.57) into (5.55), we get that∣∣∣∣ f ′

1 + f 2

∣∣∣∣ � 1 +
∣∣∣∣ q ′

1 + q2

∣∣∣∣. (5.60)

The explicit form of q is obtained from (5.21), (5.22a) and (5.53),

q = wn
a∏

j=1

(w − rj )
ρj . (5.61)

We partition ∂Ox into intervals whose endpoints are the zeros and poles of q and estimate q ′/(1 + q2) on each. We
consider in detail the interval IJ = (r2J−1, r2J ); the other intervals are treated similarly. Let x = 2a(w − r2J−1), so
that x varies between 0 and 1 on IJ . On IJ , we write

q
(
w(x)

) = wn(x)
(
gJ (x)h(x)

)ρ2J−1 , (5.62)

where

h(x) = x

x − 1
(5.63)

contains the zero and pole at the endpoints of IJ (an explicit expression for gJ (x) is given in (5.70) below). It is
straightforward to show (the calculation is similar to that in (5.55)) that∣∣∣∣ q ′

1 + q2

(
w(x)

)∣∣∣∣ � 1

2
|n| +

(
dw

dx

)−1(1

2

∣∣∣∣dgJ /dx

gJ

∣∣∣∣ +
∣∣∣∣gJ dh/dx

1 + g2
J h2

∣∣∣∣). (5.64)

Substituting (5.64) into (5.60) and noting that |n| � 3, dw/dx = 1/(2a) and dh/dx = −1/(1 − x)2, we get that

f ′2

(1 + f 2)2
� 1 + a2

∣∣∣∣dgJ /dx

gJ

∣∣∣∣2

+ a2 1

((1 − x)2/|gJ | + x2|gJ |)2
. (5.65)

The integral of the last term in (5.65) may be estimated as follows:

1∫
0

(
(1 − x)2/|gJ | + x2|gJ |)−2 dx � GJ + G−1

J , (5.66)

where

GJ = min |gJ |, GJ = max |gJ |. (5.67)

x∈[0,1] x∈[0,1]
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To get (5.66), suppose first that GJ < 1 < GJ . We divide [0,1] into the three subintervals

K =
[

0,
1

2
G−1

J

]
, L =

[
1

2
G−1

J ,1 − 1

2
GJ

]
, M =

[
1 − 1

2
GJ ,1

]
. (5.68)

On K , the integrand in (5.66) is bounded by G2
J (1−x)−4, so that the contribution from K to the integral is dominated

by GJ . On L, the integrand is bounded by (2(1 − x)x)−2 (since, in general, |a/g| + |bg| � 2|ab|1/2), so the contribu-
tion from L is dominated by GJ + G−1

J . On M , the integrand is bounded by g−2
J x−4, so its contribution is dominated

by G−1
J . In case GJ < 1, let K = [0, 1

2 ] and L = [ 1
2 ,1 − GJ /2]; in case GJ > 1, let L = [ 1

2G−1
J , 1

2 ] and M = [ 1
2 ,1].

From (5.65) and (5.66) it follows that
r2J∫

r2J−1

f ′2

(1 + f 2)2
dw � 1 + a max

0�x�1

∣∣∣∣dgJ /dx

gJ

∣∣∣∣2

+ a
(
GJ + G−1

J

)
. (5.69)

We need to estimate the terms involving gJ . From (5.61) and (5.62), gJ is given by

gJ (x) = P −1
J−1(x)Pa/2−J (1 − x), (5.70)

where

PN(x) =
N∏

K=1

x + 2K − 1

x + 2K
= �(N + 1

2x + 1
2 )

�(N + 1
2x + 1)

�( 1
2x + 1)

�( 1
2x + 1

2 )
. (5.71)

Then leading-order asymptotics for �(z), i.e. log�(z) ∼ (z − 1
2 ) log z − z and (log�)′(z) ∼ ln z (see, e.g., [1]), yields

PN(x) � N−1/2 and

∣∣∣∣P ′
N

PN

∣∣∣∣(x) � 1 for 0 � x � 1, (5.72)

which in turn imply the estimates∣∣∣∣dgJ /dx

gJ

∣∣∣∣ � 1, 0 � x � 1,

GJ ,G−1
J �

{
((a/2 + 1 − J )/J )1/2, 1 � J < a/4,

(J/(a/2 + 1 − J ))1/2, a/4 � J � a/2.
(5.73)

Substituting (5.73) into (5.69), we get that
r2J∫

r2J−1

f ′2

(1 + f 2)2
dw � 1 + a + a

(
a/2 + 1 − J

J

)1/2

+ a

(
J

a/2 + 1 − J

)1/2

. (5.74)

Estimating the contribution from the interval [r2J , r2J+1] to the integral (5.65) is carried out in much the same way.
The differences are that (i) h(x) is replaced by 1/h(x) = −h(1−x) (which may be accommodated by the substitution
x → 1 − x) and (ii) gJ (x) in (5.70) is replaced by

x + 2J − 1

x + 2J − a
PJ−1(x)P −1

a/2−J−1(1 − x). (5.75)

But the expression in (5.75) and its logarithmic derivative satisfy the same bounds as do gJ and dgJ /dx in (5.73). Thus,
the integral of f ′2/(1 + f 2)2 over [r2J , r2J+1] satisfies the same bound (5.74) as does the integral over [r2J−1, r2J ].
We obtain a bound on the collective contribution from the intervals [rj , rj+1] by summing over J in (5.74),

ra∫
r1

f ′2

(1 + f 2)2
dw � 1 + a2 + a

a/2∑
J=1

(
a/2 + 1 − J

J

)1/2

+ a

a/2∑
J=1

(
J

a/2 + 1 − J

)1/2

. (5.76)

The first sum may be estimated as

a/2∑
J=1

(
a/2 + 1 − J

J

)1/2

�
a/2∫ (

a/2 − y

y

)1/2

dy = a

2

1∫ (
1 − s

s

)1/2

ds = π

4
a, (5.77)
0 0
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and the second is similarly bounded. Thus
ra∫

r1

f ′2

(1 + f 2)2
dw � 1 + a2. (5.78)

The contributions from the remaining intervals [0, r1] and [ra,1] are treated similarly, and we get

r1∫
0

f ′2

(1 + f 2)2
dw � 1 + a2, (5.79)

1∫
ra

f ′2

(1 + f 2)2
dw � 1 + a2. (5.80)

We give an argument for (5.79) ((5.80) is treated similarly). For definiteness, let us assume that ρ1 = 1 (the case
ρ1 = −1 is treated similarly). On [0, r1] we write q = uv, where v = wn(w − r1) contains the zeros at the endpoints
and

u = (w − ra)
−1P −1

a/2−1

(
1 − 2a

(
w − 1

4

))
(5.81)

contains the remaining factors. Arguing as in (5.64) and (5.60) (but noting that u and v are functions of w, not a
rescaled coordinate x), we get that

f ′2

(1 + f 2)2
� 1 + u′2

u2
+ u2v′2

(1 + u2v2)2
. (5.82)

Clearly v′2 � 1, so that u2v′2/(1 + u2v2)2 � u2. From (5.72) and (5.81), |u′/u|2 � a2 and |u|2 � a. Therefore,
f ′2/(1 + f 2)2 � 1 + a2, and (5.80) follows. The required bound on E(1)x(ν), (5.51), follows from substituting the
estimates (5.78)–(5.80) into the formula (5.52). �
Remark. To extend the upper bound of Theorem 3 to, say, a general convex polyhedron, one would like to have a
generalisation of the octant configurations of Section 5.2. These would be conformal maps, perhaps with singularities,
of a general convex geodesic polygon � ⊂ S2 into S2 such that each edge of � is mapped into the geodesic which
contains it.
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Appendix A. Wrapping numbers as complete invariants

In [24] we gave a homotopy classification of tangent unit-vector fields on a convex polyhedron P in terms of a set
of invariants called edges signs, kink numbers and trapped areas. Here we show that these invariants can be determined
from the wrapping numbers, so that the wrapping numbers waσ constitute a complete set of invariants.

It suffices to consider the invariants associated with a single vertex. Let f be the number of faces of P . Let v
denote a vertex of P , and let wσ denote the wrapping numbers on a cleaved surface around v (we suppress the vertex
label a), where σ is an f -tuple of signs. Suppose v has b � 3 coincident faces and therefore b coincident edges. Let
Er , 1 � r � b, denote the edges coincident at v, ordered consecutively clockwise with respect to a ray from v through
the interior of P . By convention let Eb+1 = E1. Let Er denote the unit vector along Er directed away from v. Let F r

denote the face with edges Er and Er+1. An (unnormalised) outward normal on F r is given by

Fr = Er+1 × Er . (A.1)
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Let us explain briefly how the edge signs, kink numbers and trapped areas are defined (see [24] for details). Fix
a homotopy class C(h), and let n ∈ C(h) denote a representative. The edge sign er is given by the orientation of n
along the edge Er relative to Er , so that n(r) = erEr for r ∈ Er . The kink number kr is an integer giving the winding
number of n about Fr along a path on the face F r starting on the edge Er+1 and ending on the edge Er (tangent
boundary conditions imply that n is orthogonal to Fr along such path). A minimal winding (e.g., n taking values
along the shortest arc from Er+1 to Er on S2) has kink number equal to zero. Finally, the trapped area Ω is the area
in S2 of the image under n of a cleaved surface about v (the area is normalised so that S2 has area 4π ).

It is straightforward to derive the following expression for the wrapping numbers in terms of er , kr and Ω [24]:

Ω = 4πwσ(s) + 2π

b∑
r=1

sgn
(
Fr · s

)
kr

+
b−1∑
r=2

(
A

(
e1E1, erEr , er+1Er+1) − 4πτ

(
s; e1E1, erEr , er+1Er+1)). (A.2)

Here, s ∈ S2 may be taken to be any unit vector which is transverse to every face of P (including faces which are not
coincident at v). σ(s) gives the sector to which s belongs. For a,b, c ∈ S2, the quantities A(a,b, c) and τ(s;a,b, c)
are defined as follows. Let K ⊂ S2 denote the spherical triangle with vertices a , b, and c (K is well defined provided
a, b and c are not coplanar and no pair of them are antipodal). Then A(a,b, c) is the oriented area of K with values
between −π and π (the sign is given by sgn(a · (b × c))). The quantity τ(s;a,b, c) is given by

τ(s;a,b, c) =
{

sgn(a · (b × c)), s ∈ K,

0, s /∈ K.
(A.3)

That is, τ(s;a,b, c) is equal to zero unless s belongs to K , in which case it is equal to ±1 according to whether K has
positive or negative area. Note that τ(s;a,b, c) is well defined if s is transverse to the planes spanned by a,b, c taken
pairwise.

Our task here is to show that, given the wrapping numbers wσ for topology h, we can determine the edge signs,
kink numbers and trapped areas. We begin by determining the edge signs, specifically er and er+1. Without loss
of generality, we can assume that r �= 1 and r �= b (note that (A.2) remains valid if the edge indices are cyclically
permuted; there is nothing special about the edge E1).

Let S ⊂ S2 denote the great circle containing Er and Er+1. The four points ±Er , ±Er+1 partition S into four
disjoint open arcs. Denote these by Sm, m = 1,2,3,4 (the ordering is not important). Let Sm∗ denote the arc whose
endpoints are erEr and er+1Er+1. We determine m∗, and hence er and er+1, by means of the following calculation.
For each m, choose some sm ∈ Sm, and let

s±
m = sm ± εFr (A.4)

(recall that Fr is normal to S) with ε > 0 small enough so that s±
m is transverse to every face of P and so that

sgn
(
Fs · s+

m

) = sgn
(
Fs · s−

m

)
, s �= r. (A.5)

We subtract the two equations obtained by letting s = s±
m in (A.2) to obtain

wσ(s+m) − wσ(s−m) = −kr + τ
(
s+
m; e1E1, erEr , er+1Er+1) − τ

(
s−
m; e1E1, erEr , er+1Er+1). (A.6)

Let K ⊂ S2 denote the spherical triangle with vertices e1E1, erEr and er+1Er+1. If m �= m∗, then neither s+
m nor s−

m

lies in K , so that, by (A.3), both of the τ -terms in (A.6) vanish. On the other hand, if m = m∗, then either s+
m∗ or s−

m∗
lies in K but not both, so that one of the τ -terms in (A.6) vanishes while the other is equal to ±1. Therefore, amongst
the four possible values of wσ(s+m) − wσ(s−m), three will have the same value and one will be different. m∗ is identified
as the index for which wσ(s+m) − wσ(s−m) has the different value.

Once the edge signs are determined, the kink numbers can be obtained from (A.6), and hence the trapped area
from (A.2).
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