@article{AIHPC_2004__21_6_839_0, author = {Bellettini, G. and Mugnai, L.}, title = {Characterization and representation of the lower semicontinuous envelope of the elastica functional}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {839--880}, publisher = {Elsevier}, volume = {21}, number = {6}, year = {2004}, doi = {10.1016/j.anihpc.2004.01.001}, mrnumber = {2097034}, zbl = {1110.49014}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2004.01.001/} }
TY - JOUR AU - Bellettini, G. AU - Mugnai, L. TI - Characterization and representation of the lower semicontinuous envelope of the elastica functional JO - Annales de l'I.H.P. Analyse non linéaire PY - 2004 SP - 839 EP - 880 VL - 21 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2004.01.001/ DO - 10.1016/j.anihpc.2004.01.001 LA - en ID - AIHPC_2004__21_6_839_0 ER -
%0 Journal Article %A Bellettini, G. %A Mugnai, L. %T Characterization and representation of the lower semicontinuous envelope of the elastica functional %J Annales de l'I.H.P. Analyse non linéaire %D 2004 %P 839-880 %V 21 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2004.01.001/ %R 10.1016/j.anihpc.2004.01.001 %G en %F AIHPC_2004__21_6_839_0
Bellettini, G.; Mugnai, L. Characterization and representation of the lower semicontinuous envelope of the elastica functional. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 6, pp. 839-880. doi : 10.1016/j.anihpc.2004.01.001. http://www.numdam.org/articles/10.1016/j.anihpc.2004.01.001/
[1] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publication, 2000. | MR | Zbl
, , ,[2] Curvature and distance function from a manifold, J. Geom. Anal 5 (1998) 723-748. | MR | Zbl
, ,[3] L. Ambrosio, S. Masnou, A direct variational approach to a problem arising in image reconstruction, Interfaces and Free Boundaries, submitted for publication. | MR | Zbl
[4] Semicontinuity and relaxation properties of a curvature depending functional in 2D, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993) 247-299. | Numdam | MR | Zbl
, , ,[5] G. Bellettini, L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional, Preprint Univ. Pisa, May 2003.
[6] Variational properties of an image segmentation functional depending on contours curvature, Adv. Math. Sci. Appl 5 (1995) 681-715. | MR | Zbl
, ,[7] Theorie Elementaire des Fonctions Analytiques d'Une ou Pluiseurs Variables Complexes, Hermann, 1961. | MR | Zbl
,[8] On curvature sensitive image segmentation, Nonlin. Anal 39 (2000) 711-730. | MR | Zbl
,[9] Direct Methods in the Calculus of Variations, Springer-Verlag, 1989. | MR | Zbl
,[10] Special generalized gauss graphs and their application to minimization of functionals involving curvatures, J. Reine Angew. Math 486 (1997) 17-43. | MR | Zbl
,[11] Additamentum I de curvis elasticis, methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, Opera Omnia I (24) (1744) 231-297.
,[12] Geometric Measure Theory, Springer-Verlag, 1969. | MR | Zbl
,[13] Calculus of Variations I, in: Grundleheren der Mathematischen Wissenschaften, vol. 310, Springer-Verlag, 1996. | MR | Zbl
, ,[14] Some remarks on Γ-convergence and least squares method, in: Proc. Composite Media and Homogeneization Theory, Trieste, 1991, pp. 135-142. | Zbl
,[15] Global curvature and self-contact of nonlinearly elastic curves and rods, Calc. Var. Partial Differential Equations 14 (2002) 29-68. | MR | Zbl
, , , ,[16] C1,α-multiple functions regularity and tangent cone behaviour for varifolds with second fundamental form in Lp, Proc. Symp. Pure Math 44 (1986) 281-306. | Zbl
,[17] A Treatise on the Mathematical Theory of Elasticity, Dover, 1944. | MR | Zbl
,[18] Disocclusion: a variational approach using level lines, IEEE Trans. Image Process 11 (2002) 68-76. | MR
,[19] Level lines based disocclusion, in: Proc. ICIP'98 IEEE Internat. Conf. on Image Processing, 1998, pp. 259-263.
, ,[20] Variational Methods in Image Segmentation, Progress in Nonlinear Differential Equations and Their Applications, vol. 14, Birkhäuser, 1995. | MR | Zbl
, ,[21] Elastica and computer vision, in: Algebraic Geometry and its Applications, 1994, pp. 491-506. | MR | Zbl
,[22] Filtering, Segmentation and Depth, in: Lecture Notes in Computer Science, vol. 662, Springer-Verlag, 1993. | MR | Zbl
, , ,[23] The 2.1-D sketch, in: Proc. of the Third Internat. Conf. on Computer Vision, Osaka, 1990.
, ,[24] Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom 2 (1993) 281-326. | MR | Zbl
,[25] An introduction to Riemannian Geometry, Clarendon Press, 1993. | MR | Zbl
,Cité par Sources :