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Abstract

We characterize the lower semicontinuous envelopeF of the functionalF(E) := ∫
∂E [1 + |κ∂E |p]dH1, defined on

boundaries of setsE ⊂ R2, whereκ∂E denotes the curvature of∂E andp > 1. Through a desingularization procedure,
find the domain ofF and its expression, by means of different representation formulas.
 2004 Elsevier SAS. All rights reserved.

Résumé

On caractérise l’enveloppe semi-continue inférieureF de la fonctionnelleF(E) := ∫
∂E[1 + |κ∂E |p]dH1, définie sur

la classe des frontières des domainesE ⊂ R2, où κ∂E dénote la courbure de∂E et p > 1. Grâce à une méthode d
désingularisation, on trouve le domaine deF et son expression, à l’aide de différentes formules de représentation.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

In recent years a growing attention has been devoted to integral energies depending oncurvatures of a manifold
besides the geometric interest of functionals such as the Willmore functional [2,24,25], curvature dep
energies arise in models of elastic rods [11,15,17], and in image segmentation [8,18–23]. In the case
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0294-1449/$ – see front matter 2004 Elsevier SAS. All rights reserved.
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curves the main example is the functional of the so-called elastic curves [11,13] which reads as
∫ [1 + |γ̈ |2] ds.

This functional is the starting point of the research pursued in this paper. Let us consider the functional

F(E) :=
∫
∂E

[
1+ ∣∣κ∂E(z)

∣∣p]dH1(z), (1)

whereE ⊂ R2 is a bounded open subset of classC2, p > 1 is a real number,κ∂E(z) is the curvature of∂E at z and
H1 is the one-dimensional Hausdorff measure inR2.

The mapF , considered as a function of the setE rather than of its boundary∂E, appears in problems o
computer vision [8,22,23] and of image inpainting [3,18,19]. It is a simplified version of the building
appearing in the model suggested in [23] to segment an image taking into account the relative depth of the obje

One of the motivations of looking atF as a function of the setsE, which are endowed with theL1-topology,
comes from the above mentioned applications, where one is typically interested in minimizingF coupled with a
bulk term; for instance, one looks for solutions of problems of the form

inf
E∈M

{
F(E) +

∫
E

g(z) dz

}
, (2)

for an appropriate given bulk energyg, whereF stands for theL1-lower semicontinuous envelope ofF , defined on
the classM of all measurable subsets ofR2. Another motivation for adopting this point of view is represented
a conjecture in [14], where the approximation of the Willmore functional through elliptic second order function
is addressed.

The choice of theL1 topology quickly yields the existence of minimizers of (2) under rather mild assump
on g, see the discussion in [4]; however, it is clear that, being theL1 topology of sets a very weak topolog
(especially for functionals depending on second derivatives), several difficulties arise when trying to char
the domain ofF and to find its value.

The study of the properties ofF was initiated by Bellettini, Dal Maso and Paolini in [4]. After proving th
F = F on regular sets [4, Theorem 3.2], the authors exhibited several examples of nonsmooth setsE having
F(E) < +∞, see for instance Fig. 1. However, some of these examples are rather pathological (for instan
E that locally around a pointp have a qualitative shape as in Fig. 2) and show that the characterization
domain ofF is not an easy task.

Let us briefly recall the partial characterization ofF obtained in [4, Theorems 4.1, 6.2]. IfE ⊂ R2 is such
thatF(E) < +∞, then there exists a system of curvesΓ = {γ1, . . . , γm} (that is, a finite family of constant spee
immersions of the unit circleS1, see Definition 2.2) such thatγi ∈ H 2,p(S1), the union of the supports

⋃m
i=1(γi) =:

(Γ ) covers∂E and has no transversal crossings, andE coincides inL1(R2) with {z ∈ R2 \ (Γ ): I(Γ, z) = 1} =:

Fig. 1. The setE is made by two connected components having one cusp point. The sequence{Eh} consists of smooth sets converging toE in
L1(R2) whose energyF is uniformly bounded with respect toh. HenceF(E) < +∞.
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AΓ , whereI(Γ, ·) is the index ofΓ (see Definition 2.7). As a partial converse of the previous result, given a sy
of curvesΓ = {γ1, . . . , γm} ∈ H 2,p(S1

1 ×· · ·×S1
m), if Γ has no transversal crossings and self-intersects tangentiall

only at afinite number of points, thenF(Ao
Γ ) < +∞, whereAo

Γ := {z ∈ R2: I(Γ, z) ≡ 1 (mod 2)}. We stress tha
the hypothesis of finiteness for the set of self-intersection points ofΓ (which in the sequel will be called the singul
set ofΓ and denoted by SingΓ ) is an effective restriction since it may happen thatH1(SingΓ ) > 0, as was shown
in [4, Example 1, p. 271]. To conclude the list of the known results concerning the domain ofF , in [4, Theorem
6.4] it is proved that, if∂E can be locally represented as the graph of a function of classH 2,p up to a finite numbe
of “simple cusp points” (see Definition 2.33) thenF(E) < +∞ is equivalent to the condition that the total numb
of cusps is even. Finally, as far as thevalueof F is concerned, in [4, Theorem 7.3] it is proved thatF(·,Ω) does
not admit an integral representation, whereF(·,Ω) is the localization ofF on an open setΩ . This phenomenon i
due to the presence, in the computation ofF(E,Ω), of hidden curves (not in general contained in∂E) which are
a reminiscence of the limit of the boundaries∂Eh of a minimizing sequence{Eh}. Such hidden curves could b
put in relation with the problem of reconstructing the contours of an object which is partially occluded by a
object closer to the observer [6].

Eventually, the computation ofF(E) is carried on in [4, Theorem 7.2] in one case only, i.e., when∂E has only
two cusps which are positioned in a very special way (as in Fig. 1), the proof being not adaptable to more
configurations.

The aim of this paper is to answer the above discussed questions left open in the paper [4]. More prec
can

– characterize the domain ofF , thus removing the crucial finiteness assumption in Theorem 6.2 of [4], thr
a desingularization procedure on systems of curvesΓ having an infinite number of singularities;

– exhibit different representation formulas forF (obviously not integral representation in the usual sen
making computable (at least in principle) the value ofF(E) for nonsmooth setsE;

– describe the structure of the boundaries of the setsE with F(E) < +∞, and extend [4, Theorem 6.4] t
boundaries with more general singular points rather than simple cusp points.

We remark that, in the discussion of the above items, we also characterize the structure of those systems
which are obtained as weakH 2,p limits of boundariesof smooth bounded open sets.

Let us briefly describe the content of the paper. In Sections 2, 3 we prove some preliminary results,
to a characterization of the singular set of systems of curves. To explain with some details our result
subsequent sections, let usintroduce some definitions. IfΓ = {γ1, . . . , γm} is a system of curves of classH 2,p, we
let F(Γ ) :=∑m

i=1

∫ [1+ |γ̈i |p]ds. We say that two systemsΓ , Γ̃ of curves are equivalent (and we writeΓ ∼ Γ̃ )
if their traces coincide, i.e.,(Γ ) = (Γ̃ ) and if �{Γ −1(p)} = �{Γ̃ −1(p)} for anyp ∈ (Γ ). It is not difficult to show
that if Γ ∼ Γ̃ , thenF(Γ ) = F(Γ̃ ). In Theorem 5.1 and Corollary 5.2 we show that, given an arbitrary syste
curvesΓ = {γ1, . . . , γm} of classH 2,p, without transversal crossings, there exists a system of curvesΓ̃ ∼ Γ which
is the strongH 2,p-limit of a sequence{∂EN } of boundaries of smooth, open, bounded sets such that

lim
N→∞F(EN) =F(Γ ), lim

N→∞ EN = Ao
Γ in L1(R2).

This approximation result generalizes [4, Theorem 6.2], since no finiteness assumptions on SingΓ is required. The
proof, which is quite involved, requires a desingularization ofΓ around the accumulation points of SingΓ , and is
based on several preliminary lemmata, see Section 4. Observe that in Theorem 5.1 we show that among all syst

Fig. 2. The grey region denotes (possibly a part of) the setE. If E, locally around the singular pointp (which is an accumulation point o
singular points of∂E), behaves as in the figure, it may happen thatF(E) < +∞.
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of curves of classH 2,p without transversal crossings, those which have finite singular set are a dense su
the energy norm. Hence we also have that everyE with F(E) < +∞ can be approximated both inL1(R2) and
in energy by a sequence of subsets{EN } such that Sing∂EN

consists only of a finite number of cusps and bra
points (see again Definition 2.33).

In Section 6 we give some representation formulas forF . In particular, in Proposition 6.1 we show that

F(E) = min
{
F(Γ ): Γ ∈ A(E)

}
, (3)

whereΓ ∈ A(E) if and only if (Γ ) ⊇ ∂E andE = AΓ in L1(R2). This formula is much in the spirit of [10
Corollary 5.4], where a similar, but in some sense weaker, result is proved in the framework of Geometric M
Theory. Motivated by the density result of subsets with finite singular set given in Theorem 5.1 and Corolla
in Theorem 6.3 we prove that ifE has a finite number of singular points then the collectionQfin(E) of all systems
Γ ∈ A(E) with finite singular set is dense inA(E) with respect to theH 2,p-weak convergence and in energ
Moreover

F(E) = inf
{
F(Γ ): Γ ∈ Qfin(E)

}
. (4)

Theorem 6.3 is stronger than Theorem 5.1, since the approximating sequence now must fulfill the addition
constraint of being made of elements ofQfin(E). Moreover Theorem 6.3 turns out to be the key technical
for proving the results of Section 8. Note carefully that the minimum in (4) in general is not attained, as w
in Proposition 8.8.

In Section 7 the regularity of minimizersΓ for problem (3) is studied in the casep = 2. The main result of this
section is Theorem 7.1 where we show that any solutionΓ of the minimum problem (3) has, out of∂E, a finite
singular set and consists of pieces of elastic curves.

In Section 8 we focus our attention on subsetsE with finite singular set and withF(E) < +∞. The main result
of this section is Theorem 8.6, where we give a (close to optimal) representation formula forF(E). Precisely, we
prove that

F(E) =
∫

Reg∂E

[
1+ ∣∣κ∂E(z)

∣∣p]dH1(z) + 2 min
σ∈Σ(E)

F(σ ).

Here Reg∂E denotes the regular part of the boundary ofE, Σ(E) is (roughly speaking) the class of all curvesσ of
classH 2,p connecting the singular points of∂E in an appropriate way, which do not cross transversally each o
and do not cross transversally∂E. This result is a wide generalization of the example discussed in [4], wher
setE had only two cusps and a very specific geometry.

2. Notation and preliminaries

A plane curveγ : [0, a] → R2 of classC1 is said to be regular ifdγ (t)
dt

�= 0 for everyt ∈ [0,1]. Each closed
regular curveγ : [0,1] → R2 will be identified, in the usual way, with a mapγ :S1 → R2, whereS1 denotes the
oriented unit circle. By(γ ) = γ ([0,1]) = {γ (t): t ∈ [0,1]} we denote the trace ofγ and by l(γ ) its length;s
denotes the arc length parameter andγ̇ , γ̈ the first and second derivative ofγ with respect tos. Let us fix a real
numberp > 1 and letp′ be such that 1/p + 1/p′ = 1. If the second derivativëγ in the sense of distribution
belongs toLp , then the curvatureκ(γ ) of γ is given by|γ̈ |, and∥∥κ(γ )

∥∥p

Lp =
∫

]0,l(γ )[
|γ̈ |p ds < +∞;

in this case we say thatγ is a curve of classH 2,p, and we writeγ ∈ H 2,p. Moreover, we put

F(γ ) := l(γ ) + ∥∥κ(γ )
∥∥p

p .

L
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If z ∈ R2 \ (Γ ), I(γ, z) is the index ofγ with respect toz [7].
For anyC ⊂ R2 we denote by int(C) the interior ofC, by C the closure ofC, and by∂C the topological

boundary ofC. All sets we will consider are assumed to be measurable.
For every setE ⊂ R2 let χE denote its characteristic function, that isχE(z) = 1 if z ∈ E, χE(z) = 0 if z /∈ E;

for anyz0 ∈ R2, ρ > 0, Bρ(z0) := {z ∈ R2: |z − z0| < ρ} is the ball centered atz0 with radiusρ.

Definition 2.1.We say thatE ⊂ R2 is of classH 2,p (respectivelyCk, k � 1) if E is open and if, for everyz ∈ ∂E,
the setE can be locally represented as the subgraph of a function of classH 2,p (respectivelyCk) with respect to a
suitable coordinate system.

Let E ⊂ R2 be a set of classH 2,p. Since∂E can be locally viewed as the graph of anH 2,p function, we can
define, locally, the curvatureκ∂E of ∂E atH1-almost every point of∂E using the classical formulas involving th
second derivatives. One can readily check that the definition ofκ∂E does not depend on the choice of the coordin
system used to represent∂E as a graph, and also thatκ∂E ∈ Lp(∂E,H1).

Given a setE ⊂ R2, we define

E∗ := {z ∈ R2: ∃ r > 0:
∣∣Br(z) \ E

∣∣= 0
}
,

| · | denoting the Lebesgue measure. If� stands for the symmetric difference between sets and|E�F | = 0, then
E∗ = F ∗.

Let M be the collection of all measurable subsets ofR2. We can identifyM with a closed subset ofL1(R2)

through the mapE �→ χE . TheL1(R2) topology induced by this map onM is the same topology induced onM
by the metric(E1,E2) → |E1�E2|, whereE1,E2 ∈ M.

Now we define the mapF :M→ [0,+∞] as follows:

F(E) :=
{∫

∂E
[1+ |κ∂E(z)|p]dH1(z) if E is a bounded open set of classC2,

+∞ elsewhere onM.

We callL1-relaxed functional ofF , and denote it byF , the lower semicontinuous envelope ofF with respect to
the topology ofL1(R2). It is known that, for everyE ∈ M, we have

F(E) = inf
{
lim inf
h→∞ F(Eh) :Eh → E in L1(R2) ash → ∞}. (5)

2.1. Systems of curves

In this subsection we list all definitions and known facts on systems of curves used throughout the pa
we prove some preliminary results.

Definition 2.2.By a system of curves we mean a finite familyΓ = {γ1, . . . , γm} of closed regular curves of classC1

such that| dγi

dt
| is constant on[0,1] for anyi = 1, . . . ,m. Denoting byS the disjoint union ofm circlesS1

1, . . . , S1
m

of unitary length, we shall identifyΓ with the mapΓ :S �→ R2 defined byΓ|S1
i
:= γi for i = 1, . . . ,m. The trace

(Γ ) of Γ is defined as(Γ ) :=⋃m
i=1(γi).

By a system of curves of classH 2,p(S) we mean a systemΓ = {γ1, . . . , γm} such that eachγi is of class
H 2,p(S1

i ). In this case we shall writeΓ ∈ H 2,p(S).

Definition 2.3.By a disjoint system of curves we mean a system of curvesΓ = {γ1, . . . , γm} such that(γi)∩ (γj ) =
∅ for anyi, j = 1, . . . ,m, i �= j .
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Definition 2.4. We say that a system of curvesΓ = {γ1, . . . , γm} is without crossings ifdγi(t1)
dt

and dγj (t2)

dt
are

parallel, wheneverγi(t1) = γj (t2) for somei, j ∈ {1, . . . ,m} andt1, t2 ∈ [0,1].

Definition 2.5. If Γ = {γ1, . . . , γm} is a system of curves of classH 2,p, we define

l(Γ ) :=
m∑

i=1

l(γi),
∥∥κ(Γ )

∥∥p

Lp :=
m∑

i=1

∫
]0,l(γi)[

∣∣γ̈i(s)
∣∣p ds,

and

F(Γ ) =
m∑

i=1

F(γi) :=
m∑

i=1

l(γi) + ∥∥κ(γi)
∥∥p

Lp .

As | dγi

dt
| is constant on[0,1], we haves(t) = t l(γi), hence∫

]0,l(γi)[
|γ̈i|p ds = l(γi)

1−2p

∫
]0,1[

∣∣∣∣d2γi

dt2

∣∣∣∣p dt.

Given a setA = A1 × · · · × Am ⊆ S and a system of curvesΓ = {γ1, . . . , γm} ∈ H 2,p(S), we fix the following
notation:

F(Γ,A) :=
m∑

i=1

∫
Ai

{∣∣∣∣dγi

dt

∣∣∣∣dt + l(γi)
1−2p

∫
Ai

∣∣∣∣d2γi

dt2

∣∣∣∣p}dt.

Remark 2.6.With a small abuse of notation, with the same letterF we denote a functional defined onM and a
functional defined on regularH 2,p curves.

Definition 2.7. Let Γ = {γ1, . . . , γm} be a system of curves. Ifz ∈ R2 \ (Γ ) we define the index ofz with respect
to Γ asI(Γ, z) :=∑m

i=1I(γi, z).

Definition 2.8. Let E ⊂ R2 be a bounded open set of classC1. We say that a disjoint system of curvesΓ is an
oriented parametrization of∂E if each curve of the system is simple,(Γ ) = ∂E, and, in addition,

E = {z ∈ R2 \ ∂E: I(Γ, z) = 1
}
, R2 \ E = {z ∈ R2 \ ∂E: I(Γ, z) = 0

}
.

In [4, Proposition 3.1] it is proved that any bounded subsetE of R2 of classH 2,p (respectivelyC2) admits an
oriented parametrization of classH 2,p (respectivelyC2).

Definition 2.9. We say that a sequence{Γh} of systems of curves of classH 2,p converges weakly (respective
strongly) inH 2,p to a system of curvesΓ = {γ1, . . . , γm} of classH 2,p if the number of curves of each syste
Γh equals the number of curves ofΓ for h large enough, i.e.,Γh = {γ h

1 , . . . , γ h
m}, and, in addition,γ h

i converges
weakly (respectively strongly) toγi in H 2,p ash → ∞ for anyi = 1, . . . ,m.

If {Γh} weakly converges toΓ = {γ1, . . . , γm} in H 2,p, then

γ h
i → γi in C1 ash → ∞,

for anyi = 1, . . . ,m. In particular,l(γ h) → l(γi) ash → ∞.
i
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The following result is proved in [4, Theorem 3.1]; it states the coercivity of the functionalF with respect to
the weakH 2,p convergence of systems of curves.

Theorem 2.10.Let {Γh} be a sequence of systems of curves of classH 2,p such that all(Γh) are contained in a
bounded subset ofR2 independent ofh and

sup
h∈N

F(Γh) < +∞.

Then{Γh} has a subsequence which converges weakly inH 2,p to a system of curvesΓ .

Definition 2.11.We say thatΓ is a limit system of curves of classH 2,p if Γ is the weak limit of a sequence{Γh}
of oriented parametrizations of bounded open sets of classH 2,p.

Definition 2.12.We say that a system of curvesΓ verifies the finiteness property in an open setU ⊂ R2 if there
exists a finite setS ⊂ U such that(Γ ) \ S is a one-dimensional embedded submanifold ofR2 of classC1.

2.2. Nice rectangles

Definition 2.13. Let Γ = {γ1, . . . , γm} be a system of curves of classH 2,p without crossings. Letp ∈ (Γ ), let
τ (p) be a unit tangent vector to(Γ ) at p, and letτ⊥(p) be the rotation ofτ (p) of π/2 around the origin in
counterclockwise order. We say thatR(p) is a nice rectangle for(Γ ) atp if

R(p) = {z ∈ R2: z = p + lτ (p) + dτ⊥(p), |l| � a, |d| � b
}
,

wherea > 0 andb > 0 are selected in such a way that(Γ ) ∩ R(p) is given by the union of the cartesian grap
with respect to the tangent lineTp(Γ ) to (Γ ) atp, of a finite number of functions{f1, . . . , fr } such that graph(fl)

does not intersect the two sides ofR(p) which are parallel toTp(Γ ) for everyl = {1, . . . , r}.
Remark 2.14.By regularity properties of systems of curves of classH 2,p without crossings, one readily chec
that each pointp ∈ (Γ ) admits a nice rectangleR(p) at p. Moreover, ifΛ ∈ H 2,p and(Λ) ⊆ (Γ ), thenR(p) is a
nice rectangle atp also forΛ.

Let p ∈ (Γ ); when we write a nice rectangleR(p) at p for (Γ ) in the formR(p) = [−a, a] × [−b, b], we
implicitly assume thatp is the origin of the coordinates, thatTp(Γ ) is thex-axis, and thatτ⊥(p) agrees with the
vector(0,1). In this case we also setR+(p) := [0, a] × [−b, b] andR−(p) := [−a,0] × [−b, b].
2.3. Density function of a system of curves

Definition 2.15.Let Γ be a system of curves of classH 2,p. We define the density functionθΓ of Γ as

θΓ : (Γ ) → N ∪ {+∞}, θΓ (z) := �
{
Γ −1(z)

}
,

� denoting the counting measure.

Lemma 2.16.Let Γ = {γ1, . . . , γm} be a system of curves of classH 2,p. Then there existsM ∈ N depending only
onm and onF(Γ ) such that

�
{
γ −1
i (p)

}
� M ∀p ∈ (γi), ∀i = 1, . . . ,m.

Proof. The statement is a consequence of step 1 in the proof of Theorem 9.1 in [6].�
Remark 2.17.As a direct consequence of Lemma 2.16 we obtain that ifΓ is a system of curves of classH 2,p then
θΓ (z) is uniformly bounded with respect toz ∈ (Γ ).
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2.4. Definitions ofAΓ , Ao
Γ , A(E), Qfin(E), Ao(E)

If Γ is a system of curves of classH 2,p, in the following we set

AΓ := {z ∈ R2 \ (Γ ): I(Γ, z) = 1
}
,

Ao
Γ := {z ∈ R2 \ (Γ ): I(Γ, z) ≡ 1 (mod2)

}
.

(6)

Remark 2.18.If Γ is a limit system of curves of classH 2,p thenI(Γ, z) ∈ {0,1} for anyz ∈ R2 \ (Γ ), see [4]; in
particularAΓ = Ao

Γ .

Definition 2.19.Let E ⊂ R2. We denote byA(E) the collection of all limit systems of curvesΓ of classH 2,p

satisfying

(Γ ) ⊇ ∂E∗, E∗ = int
(
AΓ ∪ (Γ )

)
. (7)

We indicate byQfin(E) the collection of all systemsΓ ∈ A(E) verifying the finiteness property inR2.1 We denote
by Ao(E) the collection of all systems of curvesΓ of classH 2,p satisfying

(Γ ) ⊇ ∂E∗, E∗ = int
(
Ao

Γ ∪ (Γ )
)
. (8)

Note that the elements ofAo(E) are not, in general,limit systems of curves. MoreoverQfin(E) ⊆ A(E) ⊆
Ao(E). Finally, in view of Theorem 2.22 and (7) (respectively (8)), for everyΓ ∈ A(E) (respectivelyΓ ∈ Ao(E)),
it holds|AΓ �E| = 0 (respectively|Ao

Γ �E| = 0), providedF(E) < +∞.

Remark 2.20. If Γ ∈ A(E) (respectivelyΓ ∈ Ao(E)) and F ⊂ R2 is such that|E�F | = 0, thenΓ ∈ A(F )

(respectivelyΓ ∈ Ao(F )).

2.5. On setsE with F(E) < +∞
Definition 2.21.Let C be a subset ofR2. We say thatC has a continuous unoriented tangent if at each pointz ∈ C

the tangent coneTC(z) to C at z (see [4, Definition 4.1]) is a straight line and the mapTC : z �→ TC(z) from C into
the real projective spaceP1 is continuous.

The following results are proved in [4, Theorems 4.1, 6.2, 7.3].

Theorem 2.22.LetE ⊂ R2 be such thatF(E) < +∞. ThenE∗ is bounded, open,|E�E∗| = 0, H1(∂E∗) < +∞
and∂E∗ has a continuous unoriented tangent. Moreover

F(E) � inf
{
F(Γ ): Γ ∈ A(E)

}
, (9)

hence in particularA(E) is nonempty.

Remark 2.23.Let Γ be a system of curves of classH 2,p without crossings and define

E := Ao
Γ , F := {z ∈ R2 \ (Γ ): I(Γ, z) ≡ 0 (mod 2)

}
. (10)

Then, as noticed in [4],E,E∗,F,F ∗ are open,E∗ is bounded,|E�E∗| = 0 and

∂E∗ = ∂F ∗ = {z ∈ R2: 0 <
∣∣Br(z) ∩ E

∣∣< ∣∣Br(z)
∣∣ ∀r > 0

}= ∂E ∩ ∂F ⊆ (Γ ), E∗ = int
(
Ao

Γ ∪ (Γ )
)
. (11)

ThereforeΓ ∈Ao(E).

1 Let us remark that in [4] the setQfin(E) was denoted byQ(E).
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Theorem 2.24.Let Γ be a system of curves of classH 2,p without crossings and satisfying the finiteness prope
Then

F(Ao
Γ ) < +∞,

hence there exists a sequence{Eh} of bounded open sets of classC2 converging toAo
Γ in L1(R2) and such that

suph∈N F(Eh) < ∞. In addition, there exist oriented parametrizationsΓh of ∂Eh defined on the same paramet
spacẽS, such that{Γh} converges strongly inH 2,p(̃S) to a system of curves equivalent toΓ (see Definition2.30),
defined oñS, and whose trace contains∂Ao

Γ .

Theorem 2.25.There exists a setE ⊂ R2 such thatF(E) < +∞ andF(E, ·) is not subadditive.

2.6. Regular and singular points ofΓ . Equivalent systems

Definition 2.26.Let Γ be a system of curves of classH 2,p without crossings and letp ∈ (Γ ). We say thatp is
a regular point for(Γ ) if there exists a neighborhoodUp of p such that(Γ ) ∩ Up is the graph of a function o
classH 2,p with respect toTp(Γ ). We say thatp ∈ (Γ ) is a singular point of(Γ ) if p is not a regular point of(Γ ).
We indicate by RegΓ the set of all regular points of(Γ ) and by SingΓ = (Γ ) \ RegΓ the set of all singular point
of (Γ ).

Remark 2.27.If Γ ∈ H 2,p(S) is a system of curves, then RegΓ �= ∅. This is obvious if SingΓ = ∅. If SingΓ �= ∅,
let p ∈ SingΓ and letR(p) = [−a, a] × [−b, b] be a nice rectangle for(Γ ) atp, and write

R(p) ∩ (Γ ) =
r⋃

l=1

graph(fl), fl ∈ H 2,p
(]−a, a[).

We proceed by induction over the numberr of graphs. Supposer = 2. Asp ∈ SingΓ , there existsξ1 ∈ ]−a, a[
such thatf1(ξ1) �= f2(ξ1); hence we can find an open neighborhoodU ⊂ ]−a, a[ of ξ1 such thatf1(x) �= f2(x) for
everyx ∈ U . Therefore RegΓ ∩R(p) ⊃ {(x, fl(x)): x ∈ U} �= ∅, l = 1,2. Assume that whenR(p) ∩ (Γ ) consists
of r > 2 graphs ofH 2,p functions, then RegΓ ∩R(p) �= ∅. Suppose that(Γ ) ∩ R(p) consists ofr + 1 graphs of
H 2,p functionsf1, . . . , fr+1. Define

J := {x ∈ ]−a, a[: f1(x) /∈ {f2(x), . . . , fr+1(x)
}}

.

If J = ∅ then graph(f1) is contained in the union of the remainingr graphs and the thesis follows by th
induction hypothesis. Otherwise there isξ1 ∈ J and an open neighborhoodU ⊂ ]−a, a[ of ξ1 such that
f1(x) /∈ {f2(x), . . . , fr+1(x)} for everyx ∈ U . Hence RegΓ ∩R(p) ⊃ {(x, f1(x)): x ∈ U} �= ∅.

By an arc of regular points we mean a connected component of(Γ ) consisting of regular points of(Γ ).
If p ∈ (Γ ) by B+

ρ (p) (respectivelyB−
ρ (p)) we mean{z ∈ Bρ(p): (z − p) · τ (p) � 0} (respectively{z ∈

Bρ(z): (z − p) · τ (p) � 0}), whereτ (p) is a unit vector parallel todΓ/dt in p.

Definition 2.28.We say thatp ∈ SingΓ is a node of(Γ ) if there existsNp ∈ N, Np > 1, such that for anyρ > 0
sufficiently small eitherB+

ρ (p)∩ (Γ ) \ {p} or B−
ρ (p)∩ (Γ ) \ {p} consists of the union ofNp arcs of regular points

for (Γ ) which do not intersect each other. We indicate by NodΓ the set of the nodes of(Γ ).

Fig. 3 explains the meaning of the definition of node.

Remark 2.29.Since in the definition of regular point (respectively singular point and node) only the set(Γ ) is
involved and not the mapΓ , similar definitions can be given for every (immersed) one-dimensional subma
of R2 of classC1 without crossings.
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Fig. 3. The pointp in (a) is a node of(Γ ), while the pointq in (b) is not a node of(Γ ).

Fig. 4. Two equivalent systems of curvesΓ and Γ̃ ; observe thatΓ is a limit system of curves, whilẽΓ is not a limit system of curves. In
particularΓ̃ ∈Ao(E) \A(E) (the setE is the interior of the two drops).

Definition 2.30.Let Γ ∈ H 2,p(S) andΓ̃ ∈ H 2,p(̃S) be two systems of curves without crossings. We say thatΓ is
equivalent toΓ̃ , and we writeΓ ∼ Γ̃ , if (Γ ) = (Γ̃ ) andθΓ = θΓ̃ on (Γ ).

If Γ ∈ A(E) and if Γ̃ ∼ Γ , thenΓ̃ does not necessarily belong toA(E), since in general̃Γ is not a limit system
of curves. In Fig. 4 we show two equivalent systems of curvesΓ andΓ̃ , with Γ ∈ A(E), such that̃Γ is not a limit
system of curves. Eventually, observe that ifΓ ∼ Γ̃ thenAo

Γ = Ao
Γ̃

.

2.7. Singular points of∂E∗. Cusps and branch points

Definition 2.31.Let E be an open subset ofR2 such that∂E has continuous unoriented tangent, and letp ∈ ∂E.
We say thatp is a regular point of∂E if there exists a neighborhoodUp of p such thatUp ∩ E is the subgraph o
a function locally defined overTp(∂E). We will indicate by Reg∂E the set of all regular points of∂E. We say that
p ∈ ∂E is a singular point of∂E (and writep ∈ Sing∂E) if p /∈ Reg∂E .

Remark 2.32.If E ⊂ R2 is such thatF(E) < +∞, by Theorem 2.22, near every regular pointp, the boundary of
the setE∗ can be represented as the graph of anH 2,p function with respect toTp(∂E), see also Lemma 4.3 below

Definition 2.33. Let E be an open subset ofR2 with continuous unoriented tangent, and letp ∈ ∂E. Suppose
that there areρ > 0 and an integerk � 2 such that eitherB+

ρ (p) ∩ ∂E = ⋃k
l=1 graph(fl) or B−

ρ (p) ∩ ∂E =⋃k
l=1 graph(fl), where thefl are functions defined onTp(∂E) whose graphs meet each other only atp. If k is
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Fig. 5. The grey region locally stands for the setE. The pointp of (a) is a branch point, but not a cusp point (k = 3). The pointq of (b) is a
cusp point but not a simple cusp point, and the same happens for the pointw in (c).

even we say thatp is a cusp. Ifk is odd we say thatp is a branch point. Ifk = 2 and eitherB+
ρ (p) ∩ ∂E = {p} or

B−
ρ (p) ∩ ∂E = {p}, then we say thatp is a simple cusp point.

The definition of the set Nod∂E of the nodes of∂E is the same as Definition 2.28 where we replaceΓ by ∂E.
Each connected component of the setE in Fig. 1 has a simple cusp; in Fig. 5 we show examples of bra

points, and of cusp points which are not simple cusp points.

Remark 2.34.Let E be such thatF(E) < +∞, p ∈ Nod∂E∗ , Γ ∈ Ao(E) and letR be a nice rectangle for(Γ )

atp. As noticed in [4, p. 269], the functionθΓ is odd on the regular points of∂E∗. SinceΓ verifies the train tracks
property inR (see Definition 3.6 below) we can conclude that

– the pointp is always a cusp or a branch point, and cannot be a cusp and a branch point simultaneous
the constantsk corresponding toB+

ρ (p) ∩ ∂E and toB−
ρ (p) ∩ ∂E have the same parity;

– if p is a cusp (respectively a branch) point thenθΓ (p) is even (respectively odd). Conversely ifp ∈ Nod∂E∗
andθΓ (p) is even (respectively odd) thenp is a cusp (respectively a branch) point.

3. Some useful results on systems of curves

Proposition 3.1.Let Γ be a system of curves of classH 2,p without crossings. ThenNodΓ is at most countable
MoreoverSingΓ has empty interior,

SingΓ = NodΓ , (12)

and

RegΓ = (Γ ). (13)

Remark 3.2.It may happen thatH1(SingΓ ) > 0 (see [4, Example 1, p. 271]), therefore in this case SingΓ �= NodΓ

and SingΓ is not countable.

Proof. It is obvious that every node of(Γ ), or any accumulation point of nodes of(Γ ), is a singular point, so tha
NodΓ ⊆ SingΓ .

Let us prove the opposite inclusion. Letp ∈ SingΓ . We can select a nice rectangleR = [−a, a] × [−b, b]
centered atp = 0 where(Γ ) consists of a finite union ofr > 1 graphs ofH 2,p functions defined onR ∩ Tp(Γ )
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and all passing through the pointp. In particular, in[0, a − ε] × [−b, b] the set(Γ ) cannot be represented as t
graph of one function only for anyε ∈ [0, a[.

We now reason by induction on the number of graphs. Suppose first that[0, a] × [−b, b] ∩ (Γ ) = graph(f1) ∪
graph(f2), and setα1(x) := (x, f1(x)), α2(x) := (x, f2(x)), x ∈ [0, a]. Define

I := {x ∈ [0, a]: f1(x) �= f2(x)
}
.

As f1 andf2 are continuous,I is open, therefore it is the union of a possibly countable number of conn
componentsIh. It is clear that, ifx belongs to the boundary of one of theIh, then(x, f1(x)) is a node. Since
f1(0) = f2(0), it follows thatα−1

1 (p) cannot belong to the interior of any of theIh. Hence there are only tw
possibilities: eitherα−1

1 (p) belongs to the boundary of one of theIh, and thenp ∈ NodΓ , or α−1
1 (p) is an

accumulation point of boundarypoints of the intervalsIh, and sop ∈ NodΓ .
Assume that whenR ∩ (Γ ) consists ofr > 2 graphs of functions of classH 2,p then p ∈ SingΓ implies

p ∈ NodΓ . Suppose thatR ∩ (Γ ) consists ofr + 1 graphs of functionsf1, . . . , fr+1 of classH 2,p. Define

J := {x ∈ [0, a]: f1(x) /∈ {f2(x), . . . , fr+1(x)
}}

.

ThenJ is open. IfJ is empty, then the graph off1 is contained in the union of the remainingr graphs, and the
thesis follows by the induction hypothesis. Therefore we can suppose thatJ is nonempty. Defineσ2 := supJ > 0,
and consider the connected component]σ1, σ2[ of J havingσ2 as the right boundary point. Note that 0� σ1 < σ2.
We divide the proof into two cases.

Case1. σ1 = 0. If p is a regular point for
⋃r+1

j=2 graph(fj ), then it is a node for
⋃r+1

j=1 graph(fj ), and hence

p ∈ NodΓ . If p is a singular point for
⋃r+1

j=2 graph(fj ), thenp is a node (or an accumulation point of node

of
⋃r+1

j=2 graph(fj ) by the induction assumption. Thereforep is a node (or an accumulation point of nodes)⋃r+1
j=1 graph(fj ), and hencep ∈ NodΓ .
Case2. σ1 > 0. There are two subcases: either all functionsfl , with l ∈ {2, . . . , r + 1}, whose graph passe

through the point(σ1, f1(σ1)) coincide in an interval of the form]σ1, σ1 + δ[, or in any interval of this form
there are at least two functionsfh, fk , with h, k ∈ {2, . . . , r + 1} that do not agree. In the first subcase we h
(σ1, f1(σ1)) ∈ NodΓ . In the second subcase we can select a nice rectangleR1 ⊂ R centered at(σ1, f1(σ1)). Inside
R1 we can repeat the arguments ofcase1 for the functions{f1, . . . , fr+1}. We conclude that(σ1, f1(σ1)) ∈ NodΓ .

Now, using theC1-regularity of thefk and the fact thatfk(p) = fj (p) and f ′
k(p) = f ′

j (p) for every 1�
k, j � r + 1, we take a countable family of shrinking nice rectangles of the form[−ah, ah] × [−bh, bh], with
ah ↓ 0 andbh ↓ 0 ash → ∞, and repeat the above arguments. In this way we obtain a sequence of
ph := (σh

1 , f1(σ
h
1 )) ∈ [−ah, ah] × [−bh, bh] ∩ NodΓ , which converges top andp ∈ NodΓ . This concludes the

proof incase2, and the proof of (12).
Let us now prove (13). Letp ∈ (Γ ); we have to prove that in each neighborhood ofp there are regular point

of (Γ ). This is immediate ifp ∈ RegΓ . If p ∈ SingΓ , then by (12) eitherp ∈ NodΓ or p is an accumulation poin
of NodΓ ; in both cases, from the definition of node, we have that in each neighborhood ofp there are regular point
of (Γ ).

To conclude the proof of the proposition, it remains to show that NodΓ is at most countable. Letp ∈ (Γ ) and
let R be a nice rectangle centered atp. Suppose that(Γ ) ∩ R =⋃h

i=1 graph(fi), wherefi ∈ H 2,p(Tp(Γ ) ∩ R). If
q ∈ int(R) is a node of(Γ ), then there arek, l ∈ {1, . . . , h}, k �= l, andξ1 ∈ [−a, a] such that(ξ1, fk(ξ1)) = q and

fk(ξ1) = fl(ξ1) fk(ξ1 + x) �= fl(ξ1 + x),

for everyx ∈ ]−δ,0[ or x ∈ ]0, δ[ (whereδ > 0 is a number small enough). Therefore the pointξ1 is a boundary
point of some connected component of the set{x ∈ [−a, a]: fk(x) �= fl(x)}, but this is an open set, and so poin
of this kind can be at most countable. Now, since we can cover the whole of(Γ ) with a finite number of nice
rectangles, we have that NodΓ is at most countable.�
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Remark 3.3.Since SingΓ = NodΓ by Proposition 3.1, it is clear that if(Γ ) verifies the finiteness property inU
the set SingΓ ∩U consists of a finite number of nodes.

As a consequence of Proposition 3.1 we obtain the following

Corollary 3.4. Let Γ ∈ H 2,p(S) be a system of curves without crossings and letp ∈ SingΓ . Then there exists
nice rectangleR for (Γ ) at p such that

(Γ ) ∩ ∂R ⊂ RegΓ . (14)

Proof. Supposep = 0 ∈ SingΓ and let[−a, a] × [−b, b] be a nice rectangle for(Γ ) at p. Let f1, . . . , fr be a
collection ofH 2,p(]−a, a[) functions such that

r⋃
l=1

graph(fl) = ([−a, a] × [−b, b])∩ (Γ ).

Clearly for everyα ∈ ]−a, a[, the set[−α,α] × [−b, b] is still a nice rectangle for(Γ ) atp and(Γ ) ∩ ([−α,α] ×
[−b, b]) is still represented by the graphs off1, . . . , fr . By (13) we can findq1 ∈ ([−a, a] × [−b, b]) ∩ RegΓ .
Without loss of generality we can suppose thatq1 has coordinates(a1, f1(a1)) and a1 ∈ ]0, a[. As RegΓ is
an open subset of(Γ ), we can select an intervalI1 ⊆ ]0, a[ centered ata1 such that(x, f1(x)) ∈ RegΓ for
every x ∈ I1. From Proposition 3.1 we know that SingΓ has empty interior in(Γ ). Therefore we can find
a2 ∈ I1 such that(a2, f2(a2)) ∈ RegΓ and then select an intervalI2 ⊆ I1 such that(x, f1(x)) and (x, f2(x))

are regular points for everyx ∈ I2. Repeating the same argumentr times we find a pointar ∈ ]0, a] such that
({ar} × R) ∩ (Γ ) = {z1, . . . , zh} ⊂ RegΓ . SettingR := [−ar, ar ] × [−b, b], we get (14). �
Lemma 3.5.Let Γ be a system of curves of classH 2,p. Letp = 0 ∈ (Γ ) and letR = [−a, a] × [−b, b] be a nice
rectangle for(Γ ) at p. Then

θΓ (p) =
∑

z∈(Γ )∩({x}×[−b,b])
θΓ (z) ∀x ∈ [−a, a]. (15)

Proof. Write Γ = {γ1, . . . , γm}. Let i ∈ {1, . . . ,m} be such thatR ∩ γi(S
1
i ) �= ∅, and write

γ −1
i

(
int(R)

)=
Mi⋃
l=1

Iil ,

whereMi � ‖θΓ ‖∞ and Iil are the connected components ofγ −1
i (int(R)). Using the fact thatγi is a constan

speed parametrization we have

Iil ∩ Iik = ∅ ∀l �= k,

γi(Iil) ⊂ int(R) ∩ (Γ ), γi(∂Iil) ⊂ (Γ ) ∩ ∂R ∀l,

Iil = (s1, s2), γi(s1) ∈ {±a} × ]−b, b[ ⇒ γi(s2) ∈ ∓{a} × ]−b, b[,
andγi is injective over eachIil , so that we can takeMi = �{γ −1

i (p)}. Taking the union over alli ∈ {1, . . . ,m} such
that(γi) ∩ R �= ∅, we get

Γ −1(int(R)
)=

m⋃
i=1

�{γ −1
i (p)}⋃
l=1

Iil ,

andθΓ (p) =∑m
i=1 �{γ −1(p)}. Therefore (15) holds. �
i
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Definition 3.6. In the following, we will refer to property (15) as to the train tracks property ofΓ in R.

Proposition 3.7.LetΓ = {γ1, . . . , γm} be a system of curves of classH 2,p. Then

(a) for anyp ∈ (Γ ) and for anys0 ∈ S1
j such thatγj (s0) = p there holds

θΓ

(
γj (s0)

)
� lim sup

S1
j �s→s0

θΓ

(
γj (s)

)
. (16)

(b) θΓ is constant on each connected component ofRegΓ .

Proof. (b) Let p ∈ RegΓ and letUp be a neighborhood ofp such that(Γ ) ∩ Up is the graph of a function o
classH 2,p. Let us select a nice rectangleR ⊂ Up for (Γ ) at p. From Lemma 3.5 we have thatθΓ is constant on
(Γ )∩R. Covering(Γ )∩Up with an appropriate countable family of nice rectangles, we obtain thatθΓ is constant
onUp ∩ (Γ ).

(a) Letp ∈ SingΓ and letR be a nice rectangle for(Γ ) atp. Then (a) follows from (15) and the fact that eve
γi that intersectsR(p) passes throughp. �

In the following we will refer to property (a)of Proposition 3.7 as to the upper semicontinuity ofθΓ .

Remark 3.8.The boundedness and the upper semicontinuity ofθΓ have been proved, in different contexts, in [1

Lemma 3.9.LetΓ ∈ H 2,p(S) andΓ̃ ∈ H 2,p(̃S) be two equivalent systems of curves without crossings. Then

F(Γ ) =F(Γ̃ ). (17)

Proof. Let p ∈ (Γ ) and letR = [−a, a] × [−b, b] be a nice rectangle atp for (Γ ) = (Γ̃ ). As proved in Lemma
3.5, we have

Γ −1(R) =
θΓ (p)⋃
i=1

Ii , Γ̃ −1(R) =
θΓ̃ (p)⋃
i=1

Ĩi ,

where theIi ⊂ S (respectivelyIi ⊂ S̃) are open connected pairwise disjointarcs. Furthermore, the image of eachIi

underΓ (respectively of̃Ii underΓ̃ ) is the graph of a functionfi (respectivelyf̃i ) of classH 2,p passing through
p and the restriction ofΓ over Ii (respectively ofΓ̃ over Ĩi ) is injective. SinceΓ and Γ̃ are without crossings
using the locality of the weak derivatives in Sobolev spaces (see for instance [1, Proposition 3.71]), we ha

f ′
i = f̃j

′
, f ′′

i = f̃j
′′

a.e. on{fi = fj },
for everyi, j ∈ {1, . . . , θΓ (p) = θΓ̃ (p)}. Hence, as by hypothesis(Γ ) ∩ R = (Γ̃ ) ∩ R, we have

F
(
Γ,Γ −1(R)

)=
θΓ (p)∑
i=1

∫
]−a,a[

(
1+ |f ′′

i |p
(1+ (f ′

i )
2)3p/2

)√
1+ (f ′)2 dx

=
θΓ̃ (p)∑
i=1

∫ (
1+ |f̃ ′′

i |p
(1+ (f̃ ′

i )
2)3p/2

)√
1+ (f̃ ′)2 dx =F

(
Γ̃ , Γ̃ −1(R)

)
. (18)
]−a,a[
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Using Besicovitch Covering Theorem (see [12, Theorem 2.8.15]) we can find a countable family of nice rec
{R(pn)} such that int(R(pn)) ∩ int(R(pm)) = ∅ if pn �= pm and such that

⋃
n∈N

R(pn) coversH1-almost all
(Γ ) = (Γ̃ ). Using (18) we have

F(Γ ) =
∑
n∈N

F
(
Γ,Γ −1(R(pn)

))=
∑
n∈N

F
(
Γ̃ , Γ̃ −1(R(pn)

))=F(Γ̃ ),

which is (17). �
Remark 3.10.Using essentially the same proof, we can prove a local version of Lemma 3.9, that is: ifΓ ∈ H 2,p(S)

and Γ̃ ∈ H 2,p(̃S) are two systems of curves which verify the hypothesis of Lemma 3.9 inU ⊂ R2, i.e.,
(Γ ) ∩ U = (Γ̃ ) ∩ U andθΓ = θΓ̃ on (Γ ) ∩ U , then

F
(
Γ,Γ −1(U)

)=F
(
Γ̃ , Γ̃ −1(U)

)
.

Lemma 3.11.Let Γ ∈ H 2,p(S) and Γ̃ ∈ H 2,p(̃S) be two systems of curves. IfRegΓ = Reg̃Γ and θΓ = θΓ̃ on
RegΓ , thenΓ andΓ̃ are equivalent.

Proof. From (13) we have

(Γ̃ ) = Reg̃Γ = RegΓ = (Γ ).

Therefore to prove thatΓ and Γ̃ are equivalent it remains to check thatθΓ = θΓ̃ on (Γ ). Since by hypothesi
θΓ̃ = θΓ on Reg̃Γ = RegΓ it is enough to check thatθΓ = θΓ̃ on Sing̃Γ = SingΓ . Let p = 0 ∈ SingΓ and
R = [−a, a] × [−b, b] be a nice rectangle for(Γ̃ ) = (Γ ) atp, such thatR verifies (14), that is

(Γ ) ∩ ∂R = (Γ̃ ) ∩ ∂R ⊂ RegΓ = Reg̃Γ .

Using Lemma 3.5 and the hypothesisθΓ = θΓ̃ on RegΓ we have

θΓ (p) =
h∑

l=1

θΓ (zl) =
h∑

l=1

θΓ̃ (zl) = θΓ̃ (p),

which concludes the proof.�
Lemma 3.12.Let Γ be a system of curves without crossings, letp ∈ (Γ ) andν be a unit vector normal to(Γ ) at
p. Letz1 := p + tν, z2 := p − tν. ThenI(Γ, z1) + I(Γ, z2) ≡ θΓ (p) (mod2) for everyt > 0 small enough.

Proof. Using [4, Lemma 4.2] it follows that|I(Γ, z1) −I(Γ, z2)| = |k − d|, wherek, d ∈ N are such thatk + d =
θΓ (p). If I(Γ, z1) + I(Γ, z2) ≡ 0 (mod2) then |I(Γ, z1) − I(Γ, z2)| = |k − d| is even. Thereforek andd are
either both odd or even, henceθΓ (p) is even, andI(Γ, z1) + I(Γ, z2) ≡ θΓ (p) (mod2). If I(Γ, z1) + I(Γ, z2) ≡
1 (mod2) then|I(Γ, z1) − I(Γ, z2)| is odd. ThereforeθΓ (p) is odd, andI(Γ, z1) + I(Γ, z2) ≡ θΓ (p) (mod 2).

Using Lemma 3.12 we prove that given a system of curvesΓ without crossings, the set{q ∈ (Γ ): θΓ (q) ≡
1 (mod2)} characterizes the setAo

Γ in L1(R2).

Proposition 3.13.LetΓ ∈ H 2,p(S) andΛ ∈ H 2,p(̃S) be two systems of curves without crossings. Assume tha{
q ∈ (Γ ): θΓ (q) ≡ 1 (mod2)

}= {q ∈ (Λ): θΛ(q) ≡ 1 (mod2)
}
. (19)

Then

|Ao
Γ �Ao

Λ| = 0. (20)
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6.4
Proof. Let C be the closure of the set{q ∈ (Γ ): θΓ (q) ≡ 1 (mod2)}. We claim thatC = ∂(int(Ao
Γ ∪ (Γ ))).

Using Lemma 3.12 it follows thatC ⊆ ∂(int(Ao
Γ ∪ (Γ ))). Now letp ∈ ∂(int(Ao

Γ ∪ (Γ ))) and suppose thatp /∈ C.
From the local constancy of the index it follows that∂(int(Ao

Γ ∪ (Γ ))) ⊂ (Γ ), thereforep ∈ (Γ ). Sincep /∈ C,
it follows that θΓ (q) is even for everyr > 0 small enough and everyq ∈ Br(p) ∩ (Γ ). Using Lemma 3.12 we
have thatI(Γ, z) must be either always odd or always even for everyz ∈ Br(p) \ (Γ ) which contradicts the
assumptionp ∈ ∂(int(Ao

Γ ∪ (Γ ))). Using (19) we haveC = ∂(int(Ao
Γ ∪ (Γ ))) = ∂(int(Ao

Λ ∪ (Λ))). Let z /∈ (Γ )

and letα be a continuous curve connectingz with ∞ such that all the intersections between(Γ ) ∪ (Λ) and(α)

are transversal. SinceI(Γ, z) (mod 2) (respectivelyI(Λ, z) (mod 2)) can be computed using the parity of t
number of the intersections of(Γ ) (respectively of(Λ)) with (α) and since int(Ao

Γ ∪ (Γ )) and int(Ao
Λ ∪ (Λ))

are two bounded open subsets ofR2 with the same boundary we have int(Ao
Γ ∪ (Γ )) = int(Ao

Λ ∪ (Λ)). Therefore
Ao

Γ �Ao
Λ ⊆ (Γ ) ∪ (Λ), so that|Ao

Γ �Ao
Λ| � |(Γ ) ∪ (Λ)| = 0. �

4. Preliminary lemmata

In this section we prove some lemmata needed in the proof of Theorems 5.1, 6.3, 7.1.

Lemma 4.1.Letα,β : [0,1] �→ R2 be two regular curves of classH 2,p such thatα(1) = β(0) andα′(1) is parallel
to β ′(0). Then there is a regular curveγ : [0,1] �→ R2 of classH 2,p such that(γ ) = (α) ∪ (β) and|γ ′| is constant
on [0,1].

Proof. Let α : [0, l(α)] �→ R2 (respectivelyβ : [0, l(β)] �→ R2) be the reparametrization ofα (respectively ofβ) by
arc length such thatα(l(α)) = β(0) andα̇(l(α)) = β̇(0). Defineγ : [0, l(α) + l(β)] �→ R2 by

γ (s) :=
{
α(s) if s ∈ [0, l(α)],
β(s − l(α)) if s ∈]l(α), l(α) + l(β)].

Sinceα andβ are regular curves of classC1 andα(l(α)) = β(0), α̇(l(α)) = β̇(0), thenγ is a regular curve of clas
C1 and γ̇ = α̇ (respectivelyγ̇ = β̇) on [0, l(α)] (respectively on[l(α), l(α) + l(β)]). Using two integrations by
parts and the assumptions onα andβ one checks that the second distributional derivativeγ̈ of γ is represented b
anLp function andγ̈ = α̈ (respectivelyγ̈ = β̈) almost everywhere on]0, l(α)[ (respectively almost everywhe
on ]l(α), l(α) + l(β)[). Reparametrizingγ with t := s/(l(α) + l(β)) we obtain the thesis.�
Definition 4.2. Let a > 0 and {g1, . . . , gr } be a finite family of functions inC1([0, a]). We say that
graph(g1), . . . ,graph(gr ) meet tangentially in[0, a] if givenj, l ∈ {1, . . . , r} andx ∈ [0, a] such thatgj (x) = gl(x),
theng′

j (x) = g′
l (x). We say that graph(g1), . . . ,graph(gr) pass through zero horizontally ifgj (0) = g′

j (0) = 0 for
anyj ∈ {1, . . . , r}.

Lemma 4.3.Let a > 0 andf1, . . . , fr be a family of distinct functions of classH 2,p(]0, a[) whose graphs mee
tangentially in[0, a] and pass through zero horizontally. Define

Σ :=
{

g ∈ C0([0, a]): graph(g) ⊆
r⋃

l=1

graph(fl)

}
.

ThenΣ is a bounded subset ofH 2,p(]0, a[).

Remark 4.4.The fact thatΣ is a bounded subset ofC1([0, a]) was already observed in the proof of Theorem
of [4].
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Proof. Let g ∈ Σ . Assume first that[0, a] =⋃d
i=1[αi,βi], with d > 0 a natural number and[αi,βi ] intervals (with

0 =: α1 < β1 < α2 < · · · < βd−1 < αd < βd := a) whereg is equal to somefli . Let ϕ ∈ C∞
c (]0, a[). By Remark

4.4 we have thatg ∈ C1([0, a]), therefore∫
]0,a[

g′ϕ′ dx =
d∑

i=1

∫
]αi,βi [

f ′
li
ϕ′ dx

=
d∑

i=1

[
−
∫

]αi,βi [
f ′′

li
ϕ dx + ϕ(βi)f

′
li
(βi) − ϕ(αi)f

′
li
(αi)

]
= −

d∑
i=1

∫
]αi,βi [

f ′′
li
ϕ dx, (21)

where we used the fact that thefj meet tangentially and the compactness of the support ofϕ. Using (21) it follows
thatg ∈ H 2,p(]0, a[) and

‖g′′‖Lp(]0,a[) �
r∑

l=1

‖f ′′
l ‖Lp(]0,a[). (22)

Using (22) and the fact thatΣ is a bounded subset ofC1([0, a]) (Remark 4.4) we deduce that

‖g‖H2,p (]0,a[) � C, (23)

whereC > 0 is a constant independent ofg.
Assume now thatg ∈ Σ is arbitrary. Fix a dense countable subsetD = {xk} of [0, a]. We want to approximat

g in the weak topology ofH 2,p(]0, a[) with a sequence{gn} ⊂ Σ such thatgn(x
k) = g(xk) for everyk = 1, . . . , n

and eachgn satisfies the hypothesis of the preceding step. To construct{gn} we proceed in the following way
Fix n ∈ N and relabel the firstn elements ofD in such a way thatx0 := 0 < x1 < · · · < xn < xn+1 := a. We
can also assume that

⋃
n∈N

{x0, . . . , xn+1} = D. We give the definition ofgn over each interval[xh, xh+1]. Let
h ∈ {0, . . . , n}. We have two cases.

Case1. There existsl ∈ {1, . . . , r} such thatfl(x
h) = g(xh) andfl(x

h+1) = g(xh+1). In this case we setgn := fl

on [xh, xh+1].
Case2. For everyl ∈ {1, . . . , r} eitherfl(x

h) �= g(xh) or fl(x
h+1) �= g(xh+1). Define

ξ1 := inf
{
x ∈ ]xh, xh+1[: ∃ l ∈ {1, . . . , r}: fl(x) = g(x) andfl(x

h+1) = g(xh+1)
}
.

Notice thatxh < ξ1, otherwise we are incase1; moreover, the fact thatg is continuous and its graphs is contain
in the union of the graphs of thefi imply thatξ1 < xh+1. Finally, there isl1 ∈ {1, . . . , r} such thatfl1(ξ

1) = g(ξ1)

andfl1(x
h+1) = g(xh+1). We setgn := fl1 on [ξ1, xh+1]. Now, if there isl ∈ {1, . . . , r} such thatfl(x

h) = g(xh)

andfl(ξ
1) = g(ξ1) we setgn := fl on [xh, ξ1] and the algorithm stops. Otherwise we define

ξ2 := inf
{
x ∈ ]xh, ξ1[: ∃ l ∈ {1, . . . , r}: fl(x) = g(x) andfl(ξ

1) = g(ξ1)
}
,

and setgn := fl2 on [ξ2, ξ1], wherel2 ∈ {1, . . . , r} is such thatfl2(ξ
2) = g(ξ2) andfl2(ξ

1) = g(ξ1).
Repeating the same argumenti-times,i an arbitrary natural number, the functiongn is defined on[ξ i, xh+1] ⊆

[xh, xh+1] andgn agrees with one of thefl on each interval[ξj , ξj−1], with j = 1, . . . , i.
Observe that, if for somej ∈ {1, . . . , i} and l ∈ {1, . . . , r} we havefl(ξ

j ) = g(ξj ) then, by definition ofξj ,
fl(x) �= g(x) for everyx ∈ [xh, ξj ]. Since we deal withr distinct functions, after a finite numberK � r of steps,
necessarily there islK ∈ {1, . . . , r} such thatflK (xh) = g(xh) andflK (ξK) = g(ξK). Settinggn := flK on[xh, ξK ],
we obtain that there is a finite number of closed intervals (with pairwise disjoint interior), whose union is the
interval[xh, xh+1], wheregn agrees with one of thefl .

Now, repeating this construction for everyh = 1, . . . , n, we obtain the desired functiongn.
Recalling (22), we have that theH 2,p norm ofgn is uniformly bounded with respect ton. It follows that{gn} has

a subsequence that converges weakly inH 2,p(]0, a[) to a certain̂g ∈ H 2,p(]0, a[). SinceH 2,p weak convergenc
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implies uniform convergence, we have thatg andĝ coincide on the dense setD, henceg ≡ ĝ on [0, a]. Therefore
g ∈ H 2,p(]0, a[) and (23) holds. �

Given an open intervalI and a functiong ∈ H 2,p(I ), we define

P(g) :=
∫
I

[
1+

( |g′′|
(1+ (g′)2)3/2

)p]√
1+ (g′)2 dx. (24)

As proved in [4],P(g) equals the energyF(γ ) of a simple curveγ whose support is the graph ofg. The next
lemma is concerned withP-minimal connections between the origin and a given pointzj , see also Fig. 6.

Lemma 4.5.Leta, f1, . . . , fr andΣ be as in Lemma4.3. Set

{z1, . . . , zh} = {(a,f1(a)
)
, . . . , (a, fr(a))

}
(observe that in generalh � r). Let

Σj := {g ∈ Σ: g(a) = zj

}
, j ∈ {1, . . . , h}.

Then the problem

min
{
P
(
g, ]0, a[): g ∈ Σj

}
(25)

admits a solution. Moreover ifj �= l, there exist a minimizergj of P overΣj and a minimizergl of P overΣl

such that the following property holds: if for somec ∈ ]0, a[ we havegj (c) = gl(c), thengj ≡ gl on [0, c].

Proof. The weakH 2,p sequential lower semicontinuity of the functionalP(·, ]0, a[) follows from [9, Theorem 3.4
p. 74]. Using Lemma 4.3 it follows thatΣj is H 2,p-weakly compact for everyj ∈ {1, . . . , h}. Therefore the
minimum problem (25) admits a solution.

Fig. 6. These two figures show the construction in the proofof Lemma 4.5. In the first figure we depict three solutionsgj , j = 1,2,3 of the
minimum problem (25), andg2(c) = g3(c). In the second figure we depict the resulting minimizers: in this caseg2 ≡ g3 on [0, c].
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Let us fixg1 ∈ Σ1 solution of (25) forj = 1. Take a function̂g2 ∈ Σ2 solution of (25) forj = 2 and let

s := sup
{
x ∈ [0, a]: g1(x) = ĝ2(x)

}
.

Clearlys < a. If s = 0 then the graphs ofg1 andĝ2 meet only at 0 and in this case we setg2 := ĝ2. Supposes > 0.
Note that

P
(
g1, ]0, s[)=P

(
ĝ2, ]0, s[). (26)

Indeed, if not, assuming by contradiction for instance thatP(g1, ]0, s[) >P(ĝ2, ]0, s[), we can define the functio

ĝ1 :=
{
ĝ2 on [0, s],
g1 on ]s, a].

Using also Lemma 4.1 we havêg1 ∈ Σ1; moreoverP(g1, ]0, a[) >P(ĝ2, ]0, a[), thus contradicting the minimalit
of g1 overΣ1.

Now we define

g2 :=
{
g1 on [0, s],
ĝ2 on ]s, a].

By (26) we haveP(ĝ2, ]0, a[) = P(g2, ]0, a[). Thereforeg2 is still a minimizer ofP(·, ]0, a[) overΣ2. Now take
a function̂g3 ∈ Σ3 solution of (25) forj = 3, define

σ := sup
{
x ∈ [0, a]: eitherĝ3(x) = g2(x) or ĝ3(x) = g1(x)

}
,

and make the same operation above to obtain the functiong3.
Repeating the same argument for eachzj we obtain a family of minimizers ofP satisfying the required

properties. �
Remark 4.6.The last assertion concerninggj andgl in Lemma 4.5 is crucial in the proof of Theorem 5.1, sinc
allows to locally modify an arbitraryH 2,p system of curves into a new system verifying the finiteness proper

4.1. Finite unions of graphs, generalized multiplicity, canonical families

Definition 4.7.Let r ∈ N \ {0}, I ⊂ R a closed interval and

Y := {(g1,µ1), . . . , (gr ,µr)
}

be a family of pairs wheregl : I → R is a continuous function andµl ∈ N \ {0} for everyl = 1, . . . , r. We set

graph(Y ) :=
r⋃

i=1

graph(gi).

We call the function

ηY : graph(Y ) �→ N \ {0}, ηY (x, y) :=
∑

l:gl(x)=y

µl, (27)

the generalized multiplicity ofY .

Remark 4.8.Let b be a real number withb > max1�l�r ‖gl‖L∞(]0,a[). Then∑
z∈({x}×[−b,b])∩graph(Y )

ηY (z) =
r∑

l=1

µl ∀x ∈ [0, a].

Clearly if all gi(x) have the same value atx = 0, thenηY (0) =∑r
l=1 µl for anyx ∈ [0, a].
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In the following lemma we do not assume that the union of the graphs of the functionsgj (in R+) is contained
in (Γ ) ∩ R+.

Lemma 4.9.LetΓ ∈ H 2,p(S) be a system of curves without crossings. Letp = 0 ∈ (Γ ), R = [−a, a]× [−b, b] be
a nice rectangle for(Γ ) at p and set

{z1, . . . , zh} = (Γ ) ∩ ({a} × [−b, b]).
Let s ∈ N, s � h, let {g1, . . . , gs} ⊂ H 2,p(]0, a[) be a collection of distinct functions,{µ1, . . . ,µs} ⊂ N \ {0}, and
Y := {(g1,µ1), . . . , (gs,µs)}. Assume that

– graph(g1), . . . ,graph(gs) meet tangentially in[0, a] and pass through zero horizontally;
– {(a, g1(a)), . . . , (a, gs(a))} = {z1, . . . , zh};
– if (a, gl(a)) = zj for somel ∈ {1, . . . , s} andj ∈ {1, . . . , h}, then the vector(1, g′

l (a)) is parallel toTzj (Γ );
–
∑s

l=1 µl = θΓ (p).

If the generalized multiplicityηY of Y satisfies

ηY (zj ) = θΓ (zj ) ∀j ∈ {1, . . . , h}, (28)

then there exists a system of curvesΛ ∈ H 2,p(S), having the same number of curves asΓ , with the following
properties:

(Λ) ∩ R+ = graph(Y ) and θΛ = ηY on graph(Y );
(Λ) \ R+ = (Γ ) \ R+ and θΛ = θΓ out of R+.

Proof. Let Γ = {γ1, . . . , γm}. As observed in the proof of Lemma 3.5, we have

Γ −1(R+) =
m⋃

i=1

γ −1
i (R+) =

m⋃
i=1

�{γ −1
i (p)}⋃
k=1

Iik,

whereθΓ (p) =∑m
i=1 �{γ −1

i (p)} andIik are closed, connected, pairwise disjoint arcs ofS1
i . Fix j ∈ {1, . . . , h}.

Using (28) and (27) we have�{Iik : zj ∈ γi(Iik)} = θΓ (zj ) = ηY (zj ) =∑l:(a,gl(a))=zj
µl . Write Iik = (s1, s2). As,

for anyk = 1, . . . ,m, the first components of the two vectorsγ ′
i (s1), γ ′

i (s2) are either both positive or both negativ
we can apply Lemma 4.1 and obtain a newH 2,p curve whose image inR+ is given by graph(gl) for somel such
that (a, gl(a)) = zj . Fixed zj we repeat the same argument for everyIik such thatzj ∈ γi(Iik) in such a way
that, for everyl ∈ {1, . . . , s} such that(a, gl(a)) = zj , graph(gl) is parametrized exactlyµl times. Repeating thi
construction for everyj ∈ {1, . . . , h} we obtain the new system of curvesΛ. �
Definition 4.10.Let Γ ∈ H 2,p(S) be a system of curves without crossings. Letp = 0 ∈ (Γ ) andR = [−a, a] ×
[−b, b] be a nice rectangle for(Γ ) atp. Let {f1, . . . , fr } ⊂ H 2,p(]−a, a[) be a collection of distinct functions an
{µ1, . . . ,µr } ⊂ N \ {0}. We say thatY := {(f1,µ1), . . . , (fr ,µr)} is a canonical family for(Γ ) in R if

(Γ ) ∩ R = graph(Y ) ∩ R and θΓ = ηY on (Γ ) ∩ R. (29)

Lemma 4.11.LetΓ andR be as in Definition4.10. Then there exists a canonical familyY for (Γ ) in R.

Proof. SinceθΓ takes nonnegative integer values, we can considerµ1 := min{θΓ (q): q ∈ R} ∈ N \ {0}. From (16)
and (13), it follows that we can findq1 ∈ RegΓ ∩R such thatθΓ (q1) = µ1. From (b) in Proposition 3.7, it follows
that θΓ ≡ µ1 on a whole connected componentC1 of RegΓ ∩R containingq1. Now let f1 ∈ H 2,p(]−a, a[) be
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such thatC1 ⊆ graph(f1) ⊆ (Γ ) ∩ R (the existence off1 is ensured from the fact thatR is a nice rectangle fo
(Γ )). Then consider the function

Ψ1 : (Γ ) ∩ R → N, Ψ1 :=
{
θΓ − µ1 on graph(f1),
θΓ otherwise onR,

and defineG1 := {q ∈ int(R): Ψ1(q) > 0}. As θΓ verifies (15) we have thatΨ1 verifies the train tracks propert
in int(R). Now, observing thatG1 is still a finite union ofH 2,p graphs, that the train tracks and the up
semicontinuity properties still hold forG1 and that SingΓ ⊇ SingG1

, we repeat the argument above replacing(Γ )

with G1 andθΓ with Ψ1. In this way we obtainµ2 := min{Ψ1(q): q ∈ R} ∈ N \ {0}, a connected componentC2 of
RegΓ ∩G1 and a functionf2 ∈ H 2,p(]−a, a[) such thatC2 ⊆ graph(f2) ⊆ G1 ⊆ (Γ ). Repeating this construction
after r � θΓ (p) steps, we obtain thatGr+1 = ∅. In this way we construct a familyY := {(f1,µ1), . . . , (fr ,µr)}
such that

fl �= fj for everyl �= j, since if l < j then graph(fj ) ∩ Cl = ∅ andCl ⊂ graph(fl),

and satisfying (29). �
We conclude this section by observing that the definition of canonical family for a system of curves could

related with the notion ofC1,α multiple function appearing in varifolds theory, see for instance [16].

5. Main result on the approximation of systems of curves

The following theorem is the crucial approximation result for systems of curves of classH 2,p, and is one of the
main results of the paper.

Theorem 5.1.Let Γ be a system of curves of classH 2,p(S) without crossings. Then there exist a parame
spacẽS, a limit system of curves̃Γ ∈ H 2,p(̃S) equivalent toΓ and a sequence{Γ̃N } of limit systems of curves o
classH 2,p(̃S) satisfying the finiteness property, such that

Γ̃N ⇀ Γ̃ weakly inH 2,p(̃S), lim
N→∞F(Γ̃N ) =F(Γ ),

and

(Γ̃N) ⊆ (Γ ), F(Γ̃N) � F(Γ ) ∀N ∈ N.

Proof. The proof is divided into three steps.
Step1. We construct a sequence{ΛN } ⊂ H 2,p(S) of systems of curves (not necessarily limit systems of cur

such that, for everyN ∈ N, the following properties hold:

– (ΛN) ⊆ (Γ );
– ΛN verifies the finiteness property;
– F(ΛN) � F(Γ ).

Fix N ∈ N. For anyp ∈ SingΓ let R(p) be a nice rectangle forΓ centered atp, with diameter strictly smalle
than 2−N . By (12) the set SingΓ is compact, hence there arep1, . . . , pm(N) points of SingΓ such that

SingΓ ⊂
m(N)⋃

R(pi). (30)

i=1
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Recalling (14), we can assume that(Γ ) ∩ ∂R(pi) ⊂ RegΓ for any i ∈ {1, . . . ,m(N)}. In order to construct the
systemΛN we use a recursive algorithm consisting ofm(N) steps. We proceed as follows: letΛN

0 := Γ , let
1 � i � m(N), and suppose thatΛN

i−1 has been defined. ThenΛN
i is obtained by modifyingΛN

i−1 only on
int(R(pi)), in particular(ΛN

i ) \ R(pi) = (ΛN
i−1) \ R(pi), in such a way that:

(i) (ΛN
i ) ⊆ (ΛN

i−1);
(ii) ΛN

i verifies the finiteness property in int(R(pi));
(iii) F(ΛN

i ) � F(ΛN
i−1);

(iv) ΛN
i andΛN

i−1 are defined on the same parameter space.

Let us defineΛN
i . To simplify the notation, we assume thatpi = 0, thatTpi (Λ

N
i−1) coincides with thex-axis

and thatR(pi) = [−a, a]× [−b, b]. We shall work on(ΛN
i−1) ∩ R+(pi), since the modification ofΛN

i−1 on the set
(ΛN

i−1) ∩ R−(pi) is similar. Because of the assumptions onR(pi) and the inclusion(ΛN
i−1) ⊆ (Γ ), we have that

(ΛN
i−1) ∩ ({a} × [−b, b]) consists of a finite set of distinct pointsz+

1 , . . . , z+
h , labelled by theiry-coordinate. Let

{f +
1 , . . . , f +

r+} ⊂ H 2,p(]0, a[) be the family of distinct functions such that(ΛN
i−1) ∩ R+(pi) =⋃r+

l=1 graph(f +
l ).

For anyj ∈ {1, . . . , h} let

Σ+
j := {g ∈ C0([0, a]): graph(g) ⊆ (ΛN

i−1) ∩ R+(pi), g(a) = z+
j

}
.

Consider the problem

min
{
P
(
g, ]0, a[): g ∈ Σ+

j

}
,

whereP is defined in (24). According to Lemma 4.5, for everyj = 1, . . . , h we can select a functiong+
j ∈ Σ+

j ,

minimum ofP overΣ+
j , such that, ifj �= l and if for somec ∈ ]0, a[ we haveg+

j (c) = g+
l (c), theng+

j ≡ g+
l on

[0, c]. Then we replace all thef +
1 , . . . , f +

r+ with theg+
1 , . . . , g+

h . Observe that
⋃h

k=1 graph(g+
k ) ⊆⋃r+

l=1 graph(f +
l ).

Now consider the familyY+ := {(g+
1 , θΛN

i−1
(z+

1 )), . . . , (g+
h , θΛN

i−1
(z+

h ))} and letηY+ : graph(Y+) �→ N \ {0} be the

generalized multiplicity ofY+.
Let f −

l , z−
j , Σ−

j , g−
k , θΓ (z−

j ), Y−, ηY− be the analog for the interval[−a,0] of the spaces, functions, point
families and densities that we used in the construction on the interval[0, a].

SinceθΛN
i−1

(p) =∑h±
j=1 θΛN

i−1
(z±

j ) and, by construction,θΛN
i−1

(z±
j ) = ηY±(z±

j ) we can apply Lemma 4.9 an

find a system of curves inH 2,p(S), which will be ourΛN
i , whose trace and density function outsideR(pi) are the

same asΛN
i−1, while onR+(pi) (respectively onR−(pi)) the trace is given by graph(Y+) (respectively graph(Y−))

and the density function agrees withηY+ (respectively withηY− ). By construction, and recalling Remark 4
properties (i), (ii) and (iv) hold (note thatΛN

i verifies the finiteness property over
⋃

j�i R(pj )).
To prove the validity of (iii) we need the concept of canonical family. Since the supports of the system of cu

coincide outsideR(pi) it is enough to verify inequality (iii) insideR(pi).
Using Lemma 4.11 we can choose a canonical family{(f +

1 ,µ+
1 ), . . . , (f +

r+,µ+
r+)} for (ΛN

i−1) in R+(pi).
Observe that{z+

1 , . . . , z+
h } = {(a, f +

1 (a)), . . . , (a, f +
r (a))} andh � r+ � θΛN

i−1
(pi).

Recalling Definition 4.10 it follows

F
(
ΛN

i−1, (Λ
N
i−1)

−1(R(pi)
))=

r+∑
l=1

µ+
l P
(
f +

l , ]0, a[)+ r−∑
l=1

µ−
l P
(
f −

l , ]−a,0[). (31)

Note also that∑
l:f ±(a)=z±

µ±
l = θΛN

i−1
(z±

j ) ∀j ∈ {1, . . . , h}. (32)
l j
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We now group the terms in the summation
∑r+

l=1 as follows:

r+∑
l=1

µ+
l P
(
f +

l , ]0, a[)= h+∑
j=1

∑
l:f +

l (a)=z+
j

µ+
l P
(
f +

l , ]0, a[). (33)

We observe that for anyj and anyl such thatf +
l (a) = z+

j , the minimality property ofg+
j entails

P
(
f +

l , ]0, a[)�P
(
g+

j , ]0, a[). (34)

Therefore, from (32)–(34) we deduce

r+∑
l=1

µ+
l P
(
f +

l , ]0, a[)� h+∑
j=1

θΛN
i−1

(z+
j )P

(
g+

j , ]0, a[). (35)

Similarly

r−∑
l=1

µ−
l P
(
f −

l , ]−a,0[)� h−∑
j=1

θΛN
i−1

(z−
j )P

(
g−

j , ]−a,0[). (36)

Using (31), (35) and (36) it follows

F
(
ΛN

i−1, (Λ
N
i−1)

−1(R(pi)
))

�
h+∑
j=1

θΛN
i−1

(z+
j )P

(
g+

j , ]0, a[)+ h−∑
j=1

θΛN
i−1

(z−
j )P

(
g−

j , ]−a,0[)
=F

(
ΛN

i , (ΛN
i )−1(R(pi)

))
, (37)

and (iii) follows.
We now define

ΛN := ΛN
m(N). (38)

We have

(ΛN) = (ΛN
m(N)) ⊆ (ΛN

m(N)−1) ⊆ · · · ⊆ (ΛN
0 ) = (Γ ).

Consequently SingΛN
⊆ SingΓ , and by construction SingΛN

= NodΛN . Furthermore, sinceΛN verifies the

finiteness property on
⋃m(N)

i=1 R(pi) ⊇ SingΓ and(ΛN) ⊆ (Γ ), we have that(ΛN) verifies the finiteness proper
on R2. Finally, from (37), we have

F(ΛN) =F(ΛN
m(N)) � F(ΛN

m(N)−1) � · · · � F(Γ ),

and this concludes the proof ofstep1.
Step2. We prove that{ΛN } has a subsequence weakly converging inH 2,p(S) to a system of curvesΛ, which

is not necessarily a limit system of curves, but is equivalent toΓ .
Since(ΛN) ⊆ (Γ ) and

sup
N∈N

F(ΛN) � F(Γ ),

we can apply Theorem 3.1 of [4] and find a subsequence (still indicated by{ΛN }) which converges weakly in
H 2,p(S) asN → +∞ to a system of curvesΛ such that(Λ) ⊆ (Γ ).

We want to prove thatΛ ∼ Γ . To this aim we want to use Lemma 3.11. We start by proving that(Λ) = (Γ ).
Let p ∈ RegΓ . Since SingΓ = (Γ ) \ RegΓ is compact, we have dist(p,SingΓ ) > 0. So, for everyN with
1/2N < dist(p,SingΓ ), the pointp is outside the region where we made our modifications and therefore
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is a whole neighborhood ofp where the support ofΛN and its density function are the same as the support an
density ofΓ . Thereforep ∈ RegΛ and RegΓ ⊆ RegΛ. Hence, recalling (13) and the inclusion(Λ) ⊆ (Γ ), we get
(Γ ) = RegΓ ⊆ (Λ). So(Γ ) = (Λ) and therefore RegΓ = RegΛ.

By construction we haveθΓ = θΛ on RegΓ = RegΛ. HenceΓ ∼ Λ by Lemma 3.11.
Step3. Construction of the sequence{Γ̃N }.
Let us fixN ∈ N. As ΛN verifies the finiteness property we can apply Theorem 2.24 and find a paramete

S̃N and a limit system of curves̃ΓN ∈ H 2,p(̃SN) such that:̃SN has a number of connected components unifor
bounded with respect toN ; Γ̃N ∼ ΛN and Γ̃N is the strongH 2,p-limit of a sequence{ΓN,h}h ⊂ H 2,p(̃SN)

of oriented parametrizations of bounded smooth open sets with equibounded energy andL1(R2)-converging to
AΓ̃N

= Ao
ΛN

. Passing to a suitable subsequence (still labelled by the indexN ) we can suppose that̃SN = S̃ for
anyN .

SinceΓ̃N andΛN are equivalent, fromstep1 we have Sing̃ΓN
= NodΓ̃N

⊆ SingΓ and, using Lemma 3.9, w
have

F(Γ̃N) =F(ΛN) � F(Γ ). (39)

Furthermore fromstep1 we also have(Γ̃N) = (ΛN) ⊆ (Γ ). Therefore we can apply Theorem 2.10 and fin
subsequence (still indicated bỹΓN ) whose elements are all defined onS̃, and weakly converging inH 2,p to a
system of curves̃Γ ∈ H 2,p(̃S). Using the same arguments ofstep2, one can prove that̃Γ ∼ Γ .

Finally

F(Γ ) =F(Γ̃ ) � lim inf
N→∞ F(Γ̃N ) � lim sup

N→∞
F(Γ̃N) � F(Γ ),

and thereforeF(Γ ) = limN→∞ F(Γ̃N). �
Fig. 7 illustrates the construction of the sequence{Γ̃N } of Theorem 5.1 in a particular situation.
The following result is an improvement of Theorem 2.24.

Corollary 5.2. Let Γ be a system of curves of classH 2,p(S) without crossings. Then there exist a parame
space S̃, a system of curves̃Γ ∈ H 2,p(̃S) ∩ A(Ao

Γ ) equivalent toΓ and a sequence{ΓN } of oriented
parametrizations of bounded open smooth setsEN ⊂ R2, such that

EN → Ao
Γ in L1(R2), ΓN ⇀ Γ̃ weakly inH 2,p(̃S), lim

N→∞F(ΓN) =F(Γ ). (40)

In particular

F(Ao
Γ ) < +∞. (41)

Proof. Let Γ̃ ∈ H 2,p(S) and{Γ̃N } be as in Theorem 5.1. The convergence of the energies, together with the we
convergence, implies that limN→∞ ‖Γ̃N‖2,p = ‖Γ̃ ‖2,p, hence the strongH 2,p-convergence of{Γ̃N } to Γ̃ . Write
ΓN,h := ∂EN,h, whereΓN,h are introduced in the proof ofstep3 in Theorem 5.1. Using a diagonal argument
can select a subsequence{EN,hN }, which for simplicity we denote by{EN }, such that the sequence{ΓN } of the
oriented parametrizations of the elements of{EN } converges strongly inH 2,p(̃S) to Γ̃ . Therefore, sincẽΓ ∼ Γ ,
we have

lim
N→∞F(ΓN) =F(Γ̃ ) =F(Γ ).

It remains to prove thatEN → E in L1(R2) and thatΓ̃ ∈ A(E). For everyN ∈ N we haveχEN (z) = I(ΓN, z)

for everyz ∈ R2 \ (ΓN) andχAΓ̃
(z) = I(Γ̃ , z) for everyz ∈ R2 \ (Γ̃ ). By the continuity property of the index an

the Dominated Convergence Theorem we have thatEN = AΓN → AΓ̃ in L1(R2) asN → ∞. Using the fact tha
Γ̃ ∼ Γ we haveAΓ̃ =Ao = E, so thatEN → E in L1(R2). Moreover,Γ̃ ∈A(E). �
Γ
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Fig. 7. The setE := E1 ∪ E2 ∪ E3 has smooth boundary except for the simple cusps ofE1 andE2. The boundary of the smooth connect
componentE3 oscillates and meets (from above) infinitely many times the horizontal line connecting the two cusps. LetΓ ∈ A(E) be such
thatθΓ = 1 on RegΓ ∩∂E andθΓ = 2 on RegΓ ∩(R2 \ ∂E). The system̃ΓN is obtained through the desingularization procedure described i
Theorem 5.1, while the systemΓn is obtained through the desingularization procedure of Theorem 6.3. The main difference between the t
systems is explained in Remark 6.5. These two systems of curves are equivalent toΓ out of the two respective (dotted) nice rectangles,
have density constantly equal to 3 inside therectangles. The energies of the systemsΓn converge toF(E) (this will be a consequence of th
results of Section 8) whereas the sequence itself does not converge to an element ofQfin(E).

Remark 5.3. Inequality (41) was proved in [4, Theorem 6.2], under the further assumption thatΓ satisfies the
finiteness property. Removing this assumption is one of the interesting and useful aspects of Corollary 5.2
Theorem 5.1).

6. Representation formulas forF

According to Theorem 2.25, the functionalF(E, ·) is not local. As a consequence,F does not admit an integra
representation. In this section we study how to representF as a minimum problem involvingF , considered as
a functional defined on systems of curves. Using tools of geometric measure theory (namelygeneralized Gaus
graphs) in [10] there are some partial results in this direction.

The following result is an improvement of (9).

Proposition 6.1.LetE ⊂ R2 be such thatF(E) < +∞. Then

F(E) = min
{
F(Γ ): Γ ∈ A(E)

}= min
{
F(Γ ): Γ ∈ Ao(E)

}
. (42)

Proof. Thanks to (9), to show the first equality in (42) it is enough to prove that

F(E) � inf
{
F(Γ ): Γ ∈ A(E)

}
(43)
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and that the infimum in (43) is attained. GivenΓ ∈A(E), let {ΓN } and{EN } be as in Corollary 5.2. Recalling th
AΓ = Ao

Γ , |E�AΓ | = 0, using (5) and (40) we have

F(E) � lim inf
h→+∞F(EN) = lim

N→+∞F(ΓN) =F(Γ ),

and (43) follows.
Now we select a sequence{Eh} of smooth bounded open sets converging toE in L1(R2) and such tha

limh→+∞ F(Eh) = F(E). As in the proof of [4, Lemma 3.3], we can find a parameter spaceS, a system
Γ ∈ H 2,p(S) and a sequence{Γh} ⊂ H 2,p(S) of oriented parametrizations of smooth bounded open setsE′

h ⊆ Eh,
∂E′

h ⊆ ∂Eh, such that(Γh) are all contained in a bounded subset ofR2 independent ofh, E′
h → E in L1(R2) and

Γh ⇀ Γ weakly inH 2,p(S) ash → +∞. To show that the infimum in (43) is attained, it is enough to observe
Γ ∈A(E) and

F(E) = lim
h→+∞F(Eh) � lim inf

h→+∞F(E′
h) = lim inf

h→+∞F(Γh) � F(Γ ) � F(E),

where we used the weakH 2,p lower semicontinuity ofF on systems of curves and (43).
Let us now prove thatF(E) = min{F(Γ ): Γ ∈ Ao(E)}. As a direct consequence of the above arguments

the inclusionA(E) ⊆Ao(E) we haveF(E) � inf{F(Γ ): Γ ∈Ao(E)}. On the other hand, the opposite inequa
can be proved as in the proof of (43), using the fact that|E�Ao

Γ | = 0. Eventually, the proof that the infimum
Ao(E) is attained follows from the inclusionAo(E) ⊇ A(E) and the above observations.�
Definition 6.2. Let E ⊂ R2 be such thatF(E) < +∞. Any Γ ∈ A(E) (respectivelyΓ ∈ Ao(E)) satisfying
F(Γ ) =F(E) will be called a minimal system of curves inA(E) (respectively inAo(E)).

Theorem 6.3.LetE ⊂ R2 be such thatF(E) < +∞ and suppose thatSing∂E∗ is a finite set. LetΓ ∈A(E). Then
there exist a sequence{Γn} ⊂Qfin(E) and a system of curves̃Γ ∼ Γ such that

Γn ⇀ Γ̃ weakly inH 2,p, lim
n→+∞F(Γn) =F(Γ ).

In particular

F(E) = inf
{
F(Γ ): Γ ∈ Qfin(E)

}
. (44)

Remark 6.4. The setQfin(E) is not empty only if∂E∗ has a finite number of singularities. Indeed, for ev
Γ ∈A(E) we have SingΓ ⊇ Sing∂E∗ ; therefore, if Sing∂E∗ is infinite,Γ cannot verify the finiteness property.

Remark 6.5.The main difference between Theorem 6.3 and Theorem 5.1 is that in Theorem 6.3 we are
approximateΓ under the additional constraint that

E∗ = int
(
AΓn ∪ (Γn)

) ∀n ∈ N. (45)

The difficulty to keep (45) true is related to the following observation: even if the singular points of∂E∗ are
isolated, it may happen that they areaccumulation points of singularities of(Γ ), see Fig. 8; similarly, there may b
(an infinite number of) regular points of∂E∗ which are singular points (or accumulation points of singular points)
of (Γ ).

Remark 6.6.We shall see in Section 8.1 that the infimum in (44) in general is not achieved.
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Fig. 8. A cusp of∂E which is accumulation point of singular points ofΓ .

Proof of Theorem 6.3. Write Γ = {γ1, . . . , γm} :S → R2. Recall that, as∂E∗ ⊆ (Γ ), we have Sing∂E∗ ⊆ SingΓ .
Let accsing(Γ ) be the set of the accumulation points of SingΓ . Fix n ∈ N. For everyp ∈ accsing(Γ ) let R(p) be a
nice rectangle for(Γ ) atp with diameter less than 2−n such that:

– (Γ ) ∩ ∂R(p) ⊂ RegΓ (recall Corollary 3.4);
– if p /∈ ∂E∗ thenR(p) � R2 \ ∂E∗;
– if p ∈ Sing∂E∗ then∂E∗ is represented inR+(p) (or in R−(p)) by a finite union of graphs ofH 2,p functions,

all passing throughp, that do not intersect each other at any point ofR+(p) \ {p} (or of R−(p) \ {p}) and

F
(
Γ,Γ −1(R(p)

))
<

1

MC2n
, C := �Sing∂E∗ , M := ‖θΓ ‖L∞((Γ ),H1). (46)

Note that these graphs coincide with all points of(Γ ) ∩ (R(p) \ {p}) with odd density (in generalp may have
even density, for example if it is a cusp point of∂E∗).

Select a finite family{R(p1), . . . ,R(pδ(n))} covering the set accsing(Γ ). Since Sing∂E∗ is finite, we can also
assume that{R(p1), . . . ,R(pδ(n))} satisfies the following additional property:

p ∈ Sing∂E∗ ∩accsing(Γ ) ⇒ R(p) ∈ {R(p1), . . . ,R(pδ(n))
}
.

The construction of{Γn} is divided into two steps.
Step1. We construct a sequence{Λn} ⊂ H 2,p(S) of systems of curves such that

(a) ∂E∗ ⊆ (Λn) ⊆ (Γ );
(b) |Ao

Λn
�E∗| = 0;

(c) SingΛn
∩ ∂E∗ is a finite set;

(d) limn→+∞ F(Λn) =F(Γ ).

In the construction of{Λn} we are not able to bound the energy ofΛn with the energy ofΓ ; however, we can prov
that condition (d) is valid, andat the same time the constraint in condition (b) is fulfilled.
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In order to constructΛn we use a recursive algorithm consisting ofδ(n) steps. LetΛn
0 := Γ , let 1� i � δ(n)

and suppose that the systemΛn
i−1 of curves of classH 2,p has been defined. ThenΛn

i is obtained by modifying
Λn

i−1 only on int(R(pi)), in such a way that:

(i) the set of the points of(Λn
i ) whereθΛn

i
is odd is the same as the set of the points of(Λn

i−1) whereθΛn
i−1

is
odd;

(ii) SingΛn
i
∩R(pi) ∩ ∂E∗ is a finite set;

(iii) the following estimate holds:

∣∣F(Λn
i−1, (Λ

n
i−1)

−1(R(pi)
))−F

(
Λn

i , (Λ
n
i )

−1(R(pi)
))∣∣� { 1

C2n if pi ∈ Sing∂E∗ ,

M
δ(n)2n if pi ∈ Reg∂E∗ .

We supposepi = 0 andR(pi) = [−a, a] × [−b, b]. If either pi ∈ R2 \ ∂E∗ or pi /∈ accsing(Λ
n
i−1) then we set

Λn
i := Λn

i−1 in R(pi), and (i)–(iii) are trivially satisfied.
Let us now suppose thatpi ∈ accsing(Λ

n
i−1) ∩ ∂E∗. Write

R+(pi) ∩ ∂E∗ =
k⋃

l=1

graph(φ+
l ),

with k � 1, φ+
l ∈ H 2,p(]0, a[), φ+

l (0) = 0 for everyl = 1, . . . , k andφ+
l < φ+

j on ]0, a] for 1 � l < j � k (k = 1
if pi ∈ Reg∂E∗ ).

Define

Ψ : (Λn
i−1) ∩ R+(pi) → 2N, Ψ :=

{
θΛn

i−1
− 1 on

⋃k
l=1 graph(φ+

l ),
θΛn

i−1
otherwise in(Λn

i−1) ∩ R+(pi),

and setX := {q ∈ int(R+(pi)): Ψ (q) > 0}. As pi ∈ accsing(Λ
n
i−1), from (16) it follows thatθΛn

i−1
(pi) > 1, hence

pi ∈ X. SinceθΛn
i−1

verifies the train tracks property in int(R+(pi)) and(Λn
i−1) ∩ int(R+(pi)) is a finite union

of H 2,p graphs, we have that alsoX is a finite union ofH 2,p graphs meeting tangentially and passing thro
zero horizontally. FurthermoreΨ|X verifies the train tracks property and is upper semicontinuous in int(R+(pi)).
Finally, we remark that, since the set of points whereθΛn

i−1
is odd coincides with∪k

l=1 graph(φ+
l ) (possibly, for

k > 1, with the exclusion ofpi ), thenΨ|X is everywhere even.
Arguing as in the proof of Lemma 4.11 we construct a canonical family

Y+ := {(f +
1 ,2µ+

1 ), . . . , (f +
r+ ,2µ+

r+)
}⊂ H 2,p

(]0, a[)× (2N \ {0})
for (Ψ,X) in R+(pi), hence

X = graph(Y+), Ψ = ηY+ onX.

We now define

Ŷ+ := {(φ+
1 ,1), . . . , (φ+

k ,1), (f +
1 ,2µ+

1 ), . . . , (f +
r+,2µ+

r+)
}
.

We have

graph(Ŷ+) = (Λn
i−1) ∩ R+(pi), ηŶ+ = θΛn

i−1
on graph(Ŷ+).

If R−(pi)∩∂E∗ �= ∅ we repeat the same construction inR−(pi). We now proceed in two different ways depend
on whetherpi ∈ Sing∂E∗ or pi ∈ Reg∂E∗ . The casepi ∈ Sing∂E∗ is easier, since by assumption Sing∂E∗ is finite.
On the other hand, there may be an infinite number of regular points of∂E∗ which are accumulation points o
singular points ofΓ , and this makescase2 more delicate.
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Case1 of step1. Supposepi ∈ accsing(Λ
n
i−1) ∩ Sing∂E∗ (a situation like the one depicted in Fig. 8).

In this case we havek > 1. Let l ∈ {1, . . . , r+} and define

ξl := sup

{
x ∈ [0, a]: (x,f +

l (x)
) ∈

k⋃
j=1

graph(φ+
j )

}
.

We replace the functionf +
l with the functiong+

l defined as follows: ifξl = 0 theng+
l := f +

l . If ξl ∈ ]0, a] there
is a uniquej ∈ {1, . . . , k} such thatf +

l (ξl) = φ+
j (ξl); in this case we set

g+
l :=

{
φ+

j on [0, ξl],
f +

l on [ξl, a].
Roughly speaking, the above definition means that the graph ofg+

l coincides with∂E∗ in a small half-
neighborhood ofpi , thus leading by construction to the finiteness property ofΛn

i onR+(pi) ∩ ∂E∗.
Define

Z+ := {(φ+
1 ,1), . . . , (φ+

k ,1), (g+
1 ,2µ+

1 ), . . . , (g+
r+,2µ+

r+)
}
. (47)

By constructionR+(pi) ∩ ∂E∗ ⊆ graph(Z+) ⊆ (Λn
i−1) ∩ R+(pi). In addition the set of points of graph(Z+)

whereηZ+ is odd coincides with the set of points ofR+(pi) whereθΛn
i−1

is odd (which coincides, in turn, wit

R+(pi) ∩ ∂E∗, possibly with the exclusion ofpi ).
If R−(pi) ∩ ∂E∗ � {pi} we repeat the same construction inR−(pi).
As ∂R(pi) ⊂ RegΓ ⊆ RegΛn

i−1
and ηŶ± = θΛn

i−1
, we have thatηZ+ = θΛn

i−1
on ({a} × [−b, b]) ∩ (Λn

i−1)

(respectivelyηZ− = θΛn
i−1

on ({−a} × [−b, b]) ∩ (Λn
i−1)), so we can apply Lemma 4.9 and find a system

curves inH 2,p(S), which will be ourΛn
i , such that(Λn

i ) ∩ R±(pi) = graph(Z±) and θΛn
i |R±(pi )

= ηZ± , while

(Λn
i ) = (Λn

i−1) andθΛn
i
= θΛn

i−1
outside ofR(pi).

By construction we have that (i) and (ii) are satisfied. Furthermore

sup
R(pi)

θΛn
i
= θΛn

i
(pi) = θΛn

i−1
(pi) = sup

R(pi)

θΛn
i−1

= · · · = sup
R(pi)

θΛn
0
= sup

R(pi)

θΓ � M.

Since(Λn
i ) ⊆ (Λn

i−1) ⊆ (Γ ), we get, using (46),

F
(
Λn

i , (Λ
n
i )

−1(R(pi)
))

� MF
(
Γ,Γ −1(R(pi)

))
� 1

C2n
, (48)

and (iii) follows.
We now consider the most difficult case.
Case2 of step1. Supposepi ∈ accsing(Λ

n
i−1) ∩ Reg∂E∗ .

We keep the notation introduced at the beginning ofstep1, but we omit the super/subscript±, since we directly
work on the whole ofR(pi).

Using the assumption thatpi is a regular point for∂E∗ it follows that

R(pi) ∩ ∂E∗ = graph(φ),

whereφ ∈ H 2,p(]−a, a[), andφ(0) = φ′(0) = 0. Let {z±
1 , . . . , z±

j±} := ({±a} × [−b, b]) ∩ (Λn
i−1). Fix fl with

1 � l � r. Let

Il := {x ∈ [−a, a]: fl(x) �= φ(x)
}=

⋃
Ilk,
k∈N
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where theIlk are open pairwise disjoint intervals. We replace the functionfl with the functiongl defined as follows
If Il is composed by a finite number of connected components then we letgl := fl . Otherwise, letσ ∈ N and define
gl,σ ∈ H 2,p(]−a, a[) as

gl,σ :=
{
φ on Ilk with k � σ and±a /∈ ∂Ilk,
fl otherwise in[−a, a].

The requirement±a /∈ ∂Ilk is needed to ensure that the conditions on the lateral boundary ofR(pi) remain
unchanged.

Observe thatg′
l,σ = f ′

l on [−a, a] \⋃k�σ Ilk andg′′
l,σ = f ′′

l almost everywhere on[−a, a] \⋃k�σ Ilk . Since

limσ→+∞
∑

k�σ H1(Ilk) = 0, using the absolute continuity of the Lebesgue integral, we can chooseσl(n) ∈ N
such that∣∣P(fl, ]−a, a[)−P

(
gl,σl(n), ]−a, a[)∣∣� P

(
fl,

⋃
k�σl(n)

Ilk

)
+P

(
φ,

⋃
k�σl (n)

Ilk

)
� 1

2nδ(n)r
. (49)

Repeating the same arguments for everyl ∈ {1, . . . , r} we obtain a collection of functions{g1, . . . , gr } ⊂
H 2,p(]−a, a[) defined asgi := gi,σi (n). Let us consider the family

Z := {(φ,1), (g1,2µ1), . . . , (gr ,2µr)
}
. (50)

By construction we haveR(pi) ∩ ∂E∗ ⊆ graph(Z) ⊆ (Λn
i−1) ∩ R(pi), graph(Z) ∩ ∂R(pi) = {z±

1 , . . . , z±
j±} and

ηZ = θΛn
i−1

on∂R(pi). Applying Lemma 4.9 we obtain a system of curves inH 2,p(S), which will be ourΛn
i , whose

trace and density function outsideR(pi) are the same ofΛn
i−1, while (Λn

i ) ∩ R(pi) = graph(Z) andθΛn
i
= ηZ on

graph(Z). By construction we have that (ii) is satisfied; moreover{q ∈ graph(Z): η(q) is odd} = graph(φ). Hence
(i) is valid. Using (49) we obtain∣∣F(Λn

i , (Λ
n
i )

−1(R(pi)
))−F

(
Λn

i−1, (Λ
n
i−1)

−1(R(pi)
))∣∣

=
∣∣∣∣∣
(
P
(
φ, ]−a, a[)+ r∑

l=1

2µlP
(
gl, ]−a, a[))−

(
P
(
φ, ]−a, a[)+ r∑

l=1

2µlP
(
fl, ]−a, a[))∣∣∣∣∣

� M

r∑
l=1

∣∣P(gl, ]−a, a[)−P
(
fl, ]−a, a[)∣∣� M

2nδ(n)
. (51)

Hence (iii) is valid and this concludes the proof incase2.
We are now in a position to conclude the proof ofstep1. Define

Λn := Λn
δ(n).

By construction we have∂E∗ ⊆ (Λn) ⊆ (Γ ) and�(SingΛn
∩ ∂E∗) < +∞. Furthermore since the set of all poin

whereΛn has odd density is the same as the set of all points whereΓ has odd density, from Proposition 3.13, w
obtain that|Ao

Λn
�E∗| = 0. Therefore (a), (b) and (c) hold.

Since by construction the support and density function ofΛn
i andΛn

i−1 agree outside ofR(pi), we have, using
also (iii),

∣∣F(Λn) −F(Γ )
∣∣= ∣∣F(Λn

δ(n)) −F(Λn
0)
∣∣� δ(n)∑

i=1

∣∣F(Λn
i ) −F(Λn

i−1)
∣∣

=
δ(n)∑∣∣F(Λn

i , (Λ
n
i )

−1(R(pi)
))−F

(
Λn

i−1, (Λ
n
i−1)

−1(R(pi)
))∣∣
i=1
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the
=
∑

i: pi∈Sing∂E∗

∣∣F(Λn
i , (Λ

n
i )

−1(R(pi)
))−F

(
Λn

i−1, (Λ
n
i−1)

−1(R(pi)
))∣∣

+
∑

i: pi∈Reg∂E∗

∣∣F(Λn
i , (Λ

n
i )

−1(R(pi)
))−F

(
Λn

i−1, (Λ
n
i−1)

−1(R(pi)
))∣∣� 1+ M

2n
.

Hence also (d) is valid, and the proof ofstep1 is concluded.
Step2. We construct a sequence{Γn} ⊂ H 2,p(S) of limit systems of curves such that

(a′) ∂E∗ ⊆ (Γn) ⊆ (Λn);
(b′) |AΓn�Ao

Λn
| = 0;

(c′) SingΓn
∩(R2 \ ∂E∗) is a finite set for anyn ∈ N;

(d′) F(Γn) � F(Λn) for anyn ∈ N.

In order to constructΓn we use a recursive algorithm consisting ofδ(n) steps. LetΓ n
0 := Λn, 1 � i � δ(n) and

suppose thatΓ n
i−1 has been defined. ThenΓ n

i is obtained by modifyingΓ n
i−1 only on int(R(pi)), in such a way

that:

(i ′) the set of the points of(Γ n
i ) whereθΓ n

i
is odd is the same as the set of the points of(Γ n

i−1) whereθΓ n
i−1

is
odd;

(ii ′) R(pi) ∩ SingΓ n
i

∩ (R2 \ ∂E∗) is finite;

(iii ′) F(Γ n
i , (Γ n

i )−1(R(pi))) �F(Γ n
i−1, (Γ

n
i−1)

−1(R(pi))).

We proceed in two different ways depending on whetherpi ∈ ∂E∗, pi ∈ R2 \ ∂E∗.
Case1 of step2. Supposepi ∈ ∂E∗.
Repeating the construction at the beginning ofstep1 we can find a family

G+ := {(φ+
1 ,1), . . . , (φ+

k ,1), (u+
1 ,2ν+

1 ), . . . , (u+
r+,2ν+

r+)
}⊂ H 2,p

(]0, a[)× (N \ {0}),
such that the functionsui are all distinct andφ+

i < φ+
j on ]0, a] for i < j , and

R+(pi) ∩ ∂E∗ =
k⋃

l=1

graph(φ+
l );

R+(pi) ∩ (Γ n
i−1) = graph(G+);

ηG+ = θΓ n
i−1

in R+(pi).

Notice that ifpi ∈ Sing∂E∗ (respectivelypi ∈ Reg∂E∗ ) the functionφ+
l coincides with the functionφ+

l of case1
of step1 (respectivelyk = 1 andφ+

1 coincides withφ|R+(pi) whereφ is the function ofcase2 of step1).
We want to modify(Γ n

i−1) ∩ R(pi) leaving the functionsφ+
l unchanged in order to fulfill (i′), while, to obtain

(ii ′), (iii ′), we want to replace everyu+
l with a functionv+

l whose graph has energy lower than the energy of
graph ofu+

l and the graphs of thev+
l intersect each other tangentiallyand only a finite number of times.

To this aim we let

Σ+
l := {v ∈ C0([0, a]): graph(v) ⊂ graph(G+), v(a) = u+

l (a)
}
, l ∈ {1, . . . , r+}.

Applying Lemma 4.5 we obtain a family{v+
1 , . . . , v+

r+} ⊂ H 2,p(]0, a[) such thatv+
l is a minimizer forP in Σ+

l

and ifv+
l (c) = v+

j (c) for somec ∈ ]0, a] thenv+
l ≡ v+

j in [0, c]. Then we consider the family

H+ := {(φ+,1), . . . , (φ+,1), (v+,2ν+), . . . , (v+
+,2ν+

+)
}⊂ H 2,p

(]0, a[)× (N \ {0}).
1 k 1 1 r r
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We remark that(Γ n
i−1) ∩ ∂R+(pi) = graph(H+) ∩ ∂R+(pi). In addition, if z ∈ graph(H+) ∩ ∂R+(pi) then

ηH+(z) = ηG+(z) = θΓ n
i−1

(z). Finally we note that, by construction,ηH+(q) is odd if and only if q ∈⋃k
l=1 graph(φ+

l ) (possibly with the exclusion ofpi ).
Then we repeat the same construction inR−(pi).
As all the hypotheses are fulfilled, we can apply Lemma 4.9 and obtain a system of curvesΓ n

i ∈ H 2,p(S) such
that(Γ n

i ) ∩ R±(pi) = graph(H±) and(θΓ n
i
)|R±(pi) = ηH± .

Since

(Γ n
i )−1((R2 \ ∂E∗) ∩ R±(pi)

)⊂ r±⋃
l=1

graph(v±
l )

and the set of singular points of
⋃r±

l=1 graph(v±
l ) is finite we have thatΓ n

i satisfies (ii′). Furthermore

F
(
Γ n

i , (Γ n
i )−1(R(pi)

))
=

k−∑
l=1

P
(
φ−

l , ]−a,0[)+ k+∑
l=1

P
(
φ+

l , ]−a,0[)+ r−∑
l=1

2ν−
l P
(
v−
l , ]−a,0[)+ r+∑

l=1

2ν+
l P
(
v+
l , ]0, a[)

�
k−∑
l=1

P
(
φ−

l , ]−a,0[)+ k+∑
l=1

P
(
φ+

l , ]−a,0[)+ r−∑
l=1

2ν−
l P
(
u−

l , ]−a,0[)+ r+∑
l=1

2ν+
l P
(
u+

l , ]0, a[)
=F

(
Γ n

i−1, (Γ
n
i−1)

−1(R(pi)
))

,

which is (iii′).
Case2 of step2. Supposepi ∈ R2 \ ∂E∗.
In this case we obtainΓ n

i simply repeating the construction used instep1 in the proof of Theorem 5.1. Since w
supposed thatR(pi) � R2 \ ∂E∗, in R(pi) there are not points of(Γ ) or of (Γ n

i−1) with odd density. Therefore th
set of points of(Γ n

i ) whereθΓ n
i

is odd coincides with the set of points of(Γ n
i−1) whereθΓ n

i−1
is odd, by construction

we have

F
(
Γ n

i , (Γ n
i )−1(R(pi)

))
� F

(
Γ n

i−1, (Γ
n
i−1)

−1(R(pi)
))

,

and(Γ n
i ) verifies the finiteness property inR(pi). This concludes the proof ofcase2 of step2.

We are now in a position to conclude the proof ofstep2. Define

Γn := Γ n
δ(n).

Applying Theorem 5.1 we can find alimit system of curves which is equivalent toΓn. Let us still denote by
Γn this new limit system of curves. Since we did not modify the set of points with odd multiplicity, than
Proposition 3.13 we have that|AΓn�Ao

Λn
| = 0 which is the assertion of(b′). By construction we have∂E∗ ⊆

(Γn) ⊆ (Λn) ⊆ (Γ ), and�(SingΓn
∩ (R2 \ ∂E∗)) < +∞ which are the assertions of(a′) and(c′). Furthermore,

F(Γn) =F(Γ n
δ(n)) � F(Γ n

δ(n)−1) � · · · � F(Γ n
1 ) � F(Γ n

0 ) =F(Λn),

which proves(d ′) and this concludes the proof ofstep2.
Now, using the properties ofΛn andΓn, we can conclude the proof of the theorem. Thanks to(b), (b′), we have

|AΓn�E| � |AΓ n�Ao
Λn

| + |Ao
Λn

�E| = 0,

and hence (45) holds. Since everyΓn is a limit system of curves and (45) holds, using Remarks 2.23 and 2.2
have{Γn} ⊂ A(E). Givenn ∈ N, from (c) and(c′) it follows that (Γn) verifies the finiteness property, therefo
{Γn} ⊂Qfin(E).
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By construction we have‖θΓn‖L∞ � ‖θΓ ‖L∞ and from(a), (a′) it follows that(Γn) ⊆ (Γ ), hence

sup
n∈N

F(Γn) < +∞.

So we can apply Theorem 2.10 to obtain a subsequence (still indicated by{Γn}) H 2,p-weakly converging to a
certain system of curves̃Γ . Again as in the proof of Theorem 5.1, due to the fact that the diameters of the
rectangles used to cover the set accsing(Γ ) uniformly decrease to 0, we obtain

Reg̃Γ = RegΓ , (θΓ̃ )|Reg̃Γ = (θΓ )|RegΓ .

These relations, together with Lemma 3.11, imply thatΓ̃ ∼ Γ .
Using(d), (d ′), Lemma 3.9 and theH 2,p weak lower semicontinuity ofF , we have

F(Γ ) =F(Γ̃ ) � lim inf
n→+∞F(Γn) � lim sup

n→+∞
F(Γn)

� lim sup
n→+∞

F(Λn) = lim
n→+∞F(Λn) =F(Γ ).

Eventually, assertion (44) is a direct consequence of (42) and the assertions concerning{Γn}. �
Fig. 7 illustrates the construction of the sequence{Γn} of Theorem 6.3 in a particular situation.

7. Regularity of minimal systems inA(E)

In the following theorem we prove a regularity result for minimal systems of curves. We limit ourselves to
the regularity of(Γ ) in R2 \ ∂E∗ and locally around regular points, since we know thatΓ is without crossings an
the optimal regularity for(Γ ) in RegΓ ∩∂E∗ is given by the local representation with functions of classH 2,p.

Theorem 7.1.Let p = 2 and letE ⊂ R2 be such thatF(E) < +∞. Then every minimal systemΓ of curves in
A(E) verifies the finiteness property in any open subsetU � R2 \ ∂E∗.

Furthermore, every connected componentB of RegΓ ∩U is an analytic curve and its curvatureκ verifies the
equation

2
d2

ds2κ + κ3 − κ = 0, s ∈ [0,H1(B)
]
. (52)

Proof. Let Γ be a minimal system inA(E) and fix an open setU � R2 \ ∂E∗. The proof consists of two steps.
Step1. Every connected componentB of RegΓ ∩U is an analytic curve and its curvatureκ verifies (52).
Let B be a connected component of RegΓ ∩U ; B is a one-dimensional submanifold ofR2 of classH 2,2

and θΓ is constant and even onB. Let α : [0,H1(B)] → R2 be a parametrization by arc length ofB, let
η ∈ C∞

c ([0,H1(B)]) and consider the curveαε : [0,H1(B)] → R2, αε := α + εη. For |ε| � 1 we have(αε) ∩
[(Γ ) \ B] = ∅. Using Lemma 4.1, we can find a system of curvesΓε ∈ A(E), whose trace is given by

(Γε) = [(Γ ) \ B
]∪ (αε),

andθΓε = θΓ on (Γ ) \ B, while θΓε on (αε) assumes the same constant value ofθΓ on B. Since the set of point
with odd multiplicity of Γ andΓε coincides, using Corollary 5.2 and Proposition 3.13, we can find a syste
curvesΓ̃ε ∈A(E) which is equivalent toΓε. Therefore, from the minimality ofΓ onA(E), we have

lim
F(α + εη) −F(α) = 0.
ε→0 ε
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Using [13] and the regularity theory of ordinary differential equations, it follows thatB is an analytic submanifold
of R2 and (52) holds.

Step2. Γ verifies the finiteness property inU .
Suppose by contradiction that there existsU � R2 \ ∂E∗ such thatΓ does not verify the finiteness proper

in U . Hence accSing(Γ ) ∩U �= ∅. Let p ∈ accSing(Γ ) ∩U and letR(p) = [−a, a] × [−b, b] be a nice rectangle fo
(Γ ) atp such that

R(p) � R2 \ ∂E∗;
�(R+(p) ∩ SingΓ ) = +∞;
(Γ ) ∩ ∂R(p) ⊂ RegΓ .

Let

Y+ := {(f +
1 ,µ+

1 ), . . . , (f +
r ,µ+

r )
}⊂ H 2,p

(]0, a[)× (2N \ {0})
be a canonical family forΓ in R+(p). For everyi, j ∈ {1, . . . , r} let

Iij := {x ∈ [0, a]: (x,f +
i (x)

)= (x,f +
j (x)

) ∈ SingΓ

}
, ξij := sup{x: x ∈ Iij }.

Note that, since(Γ ) ∩ ∂R(p) ⊂ RegΓ , we havea /∈ Iij . If 0 < ξij < a then, due to the minimality ofΓ in A(E)

we have

P
(
f +

i , ]0, ξij [
)=P

(
f +

j , ]0, ξij [
)
. (53)

Indeed, suppose by contradiction thatP(f +
i , ]0, ξij [) <P(f +

j , ]0, ξij [). Setting

f̂ +
j :=

{
f +

i on [0, ξij ],
f +

j on [ξij , a],
from Lemma 4.9 and Corollary 5.2, we can find a system of curvesΓ̂ ∈ A(E) such that(Γ̂ ) ∩ R+(p) =
graph(Ŷ ), θΓ̂ |R+(p) = ηŶ , whereŶ is obtained fromY by replacingfj with f̂j . HenceF(Γ̂ ) < F(Γ ) which
contradicts the minimality ofΓ , and (53) is proved.

Usingstep1 we have that eachf +
i is analytic on the interval[0, ξ̃i], wherẽξi := sup{ξij : 1 � j � r}. Therefore,

if Iij is infinite thenf +
i = f +

j on [0, ξij ]. It follows thatΓ verifies the finiteness property inR+(p) and we have
a contradiction. �
Remark 7.2. In the general casep ∈ ]1,+∞[, p �= 2, arguing as in the proof of Theorem 5.1, for a fix
U � R2\∂E∗ it is possible to prove that there exists a minimal system of curvesΓ in A(E) verifying the finiteness
property inU . The Euler equation for a functional whose integrand is a smooth function ofκ can be found in the
literature, see for instance [13, pages 63, 64]. In this case a regularity result (similar to the one in Theor
holds, at least on compact subsets where the curvature does not vanish.

8. Characterization of the setsE with F(E) < +∞ and finite singular set

As a consequence of Theorem 5.1 and Corollary 5.2 we have that anyE ⊂ R2 with F(E) < +∞ can be
approximated, both inL1(R2) and in energy, with sets having a finite number of singular points. Our purpo
to give a characterization of the subsets ofR2 with finite singular set (and finite relaxed energy). Throughout
section we will always suppose thatE ⊂ R2 has continuous unoriented tangent, that∂E is piecewiseH 2,p and
that Sing∂E is finite. HenceE∗ = E and for everyp ∈ Reg∂E the setE can be locally written as the subgraph
anH 2,p function defined onTp(∂E).
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The following definition is contained in [4, p. 282] and is needed to “count” the number of singularities of∂E

with an appropriate multiplicity.

Definition 8.1.For everyp ∈ Sing∂E we define the balanced multiplicityω∂E(p) as

ω∂E(p) := |ρ+(p) − ρ−(p)|
2

,

whereρ+(p) (respectivelyρ−(p)) is the number of distinct graphs necessary to coverB+
r (p) ∩ ∂E (respectively

B−
r (p) ∩ ∂E), for r > 0 small enough.

Remark 8.2.As observed in [4, p. 282],|ρ+(p) − ρ−(p)| is even for anyp ∈ Nod∂E = Sing∂E . Indeed, given
p ∈ Nod∂E , there existsr > 0 such thatBr(p) contains both points ofE and ofR2 \ E, the intersection betwee
∂Br(p) and∂E is transversal and hence the number of the elements of∂E ∩ ∂Br(p) is even. Ifr is sufficiently
small, this number coincides withρ+(p) + ρ−(p), which has the same parity of|ρ+(p) − ρ−(p)|.

The following result is contained in [4, Theorems 6.3, 6.4].

Theorem 8.3.We have∑
p∈Sing∂E

ω(p) is even ⇒ F(E) < +∞.

Furthermore ifSing∂E = {p1, . . . , pn} andpi is a simple cusp point for everyi = 1, . . . , n, then

F(E) < +∞ ⇒ n is even. (54)

Actually, a more refined result can be proved. Indeed, the following theorem holds.

Theorem 8.4.We have

F(E) < +∞ ⇒
∑

p∈Sing∂E

ω∂E(p) is even.

Theorem 8.4 is based, among other tools, on formula (44) and on Theorem 8.3; since no new techniques
needed, we omit its proof, which can be found in [5].

We now want to prove Theorem 8.6, which is oneof the main representation results forF of the paper.
Let E ⊂ R2 be such thatF(E) < +∞. Suppose that Sing∂E is not empty, finite and composed only by simp

cusp points. Using Theorem 8.3 we have

Sing∂E = {p1,p2, . . . , p2M}, M ∈ N \ {0}.
For everypi ∈ Sing∂E we choose a unit vectorν(pi) normal toTpi (∂E) in such a way thatρ+

∂E(pi) � ρ−
∂E(pi).

Accordingly, the half-nice rectangleR+(pi) corresponds toρ+(pi).

Definition 8.5.Let E ⊂ R2 be as above. We defineΣ(E) as the set of all collections{σ1, . . . , σM} of curves such
that

(i) σi ∈ H 2,p(0,1) and|dσi/dt| is constant for everyi = 1, . . . ,M;
(ii) if σi(t1) = σj (t2) for somet1, t2 ∈ [0,1] thendσi(t1)/dt anddσj (t2)/dt are parallel; moreover ifσi(t) ∈ ∂E

for somet ∈ [0,1], thendσi(t)/dt is parallel toTσi(t)(∂E);
(iii) σi(0), σi(1) ∈ Sing∂E for everyi ∈ {1, . . . ,M}, and there exists a bijective application between{σ1(0), σ1(1),

. . . , σM(0), σM(1)} and Sing∂E ;



874 G. Bellettini, L. Mugnai / Ann. I. H. Poincaré – AN 21 (2004) 839–880

nts

nd
(iv) for everyi ∈ {1, . . . ,M}
dσi

dt
(0) is parallel toTσi(0)(∂E) and points in the direction ofR−(σi(0)

)
,

dσi

dt
(1) is parallel toTσi(1)(∂E) and points in the direction ofR+(σi(1)

)
.

It is immediate to see that the setΣ(E) is not empty.

Theorem 8.6.Assume thatF(E) < +∞ and that Sing∂E consists of a finite number of simple cusp poi
{p1, . . . , p2M}. Then we have the following representation formula forF(E):

F(E) =
∫

Reg∂E

[
1+ |κ∂E|p]dH1 + 2 min

σ∈Σ(E)
F(σ ). (55)

Proof. The proof is divided into three steps.
Step1. We have

F(E) �
∫

Reg∂E

[
1+ |κ∂E|p]dH1 + 2 inf

σ∈Σ(E)
F(σ ). (56)

Thanks to (44), to obtain (56) it is enough to prove that for everyΓ ∈ Qfin(E) we can findσΓ = {σ1, . . . , σM} ∈
Σ(E) such that

F(Γ ) �
∫

Reg∂E

[
1+ |κ∂E|p]dH1 + 2F(σΓ ). (57)

We will see thatσΓ satisfies also(σΓ ) ⊂ (Γ ).
Let Γ ∈Qfin(E). For everyq ∈ SingΓ ⊇ Sing∂E , we denote byR(q) a nice rectangle forΓ at q such that

R(q) ∩ SingΓ = {q}. (58)

Moreover for everyq ∈ SingΓ \Sing∂E we make an arbitrary choice of a normal unit vector to(Γ ) at q so that
R+(q),R−(q) are defined.

Let us constructσ1. From now on with the symbolδj we denote+1 or −1. Accordingly, for everyq ∈ SingΓ
we writeRδj (q) in place ofR±(q) whenδj = ±1.

Construction ofσ1. Set(G0,Ψ0, (q0, δ0)) := ((Γ ), θΓ , (p1,+1)). Suppose we have defined(Gi ,Ψi, (qi, δi)) for
somei � 1, with:

(a) Ψi :Gi−1 → N, Ψi :=
{
Ψi−1 − 2 onHi ,
Ψi−1 onGi−1 \ Hi,

Gi := {z ∈ Gi−1: Ψi(z) > 0
}
, (59)

whereHi ⊂ Gi−1 is a connected component of RegGi−1
such that:Ψi−1 � 2 is constant onHi ; qi ∈ SingΓ is a

point of the relative boundary ofHi (which is composed either byqi−1 itself, and in this case we understa
thatqi−1 = qi , or by two points{qi−1, qi} ⊂ SingΓ ); Hi crossesR−δi−1(qi−1) and reachesqi crossingRδi (qi);

(b) the functionΨi verifies the train tracks property in the rectangleR(q) for everyq ∈ Gi ∩ (SingΓ \{p1, qi});
(c) if qi �= p1 we have∑

z∈Gi∩∂R+(p1)

Ψi(z) =
∑

z∈Gi∩∂R−(p1)

Ψi(z) + 2;

moreover

δi = ±1 ⇒
∑

+
Ψi(z) =

∑
−

Ψi(z) ∓ 2;

z∈Gi∩∂R (qi) z∈Gi∩∂R (qi)
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Fig. 9. The construction ofσ1 in step1 in the proof of Theorem 8.6.

(d) if qi = p1 andδi = −1 then∑
z∈Gi∩∂R+(p1)

Ψi(z) =
∑

z∈Gi∩∂R−(p1)

Ψi(z) + 4;

(e) if qi = p1 andδi = +1 then∑
z∈Gi∩∂R+(p1)

Ψi(z) =
∑

z∈Gi∩∂R−(p1)

Ψi(z).

Let us construct the first step (i = 1). Sincep1 := q0 is a simple cusp point andθΓ verifies the train tracks
property, we can find a relative connected component of RegΓ which crossesR−(p1) and over whichΨ0 := θΓ is
constant� 2. Hence we can define(G1,Ψ1, (q1, δ1)) satisfying properties (a)–(e), see Fig. 9.

Let us now explain in which way the algorithm constructs the stepi + 1 from the stepi � 1. If {z ∈
∂R−δi (qi): Ψi(z) � 2} = ∅ then, from the hypothesis that Sing∂E is composed only by simple cusps and (
(e), we have thatqi ∈ Sing∂E \{p1}; in this case the algorithm stops and we set

(σ1) := H1 ∪ · · · ∪ Hi.

Otherwise, in view of (c), (d), (e) and (58) we can find an arc of regular points of(Γ ) which is contained inGi ,
crossesR−δi (qi) and is such thatΨi � 2 is constant on this arc. LetHi+1 be the connected component of RegGi

containing this arc and let{qi, qi+1} be the relative boundary ofHi+1 (possibly withqi = qi+1). Again from (b)–(e)
we have thatΨi � 2 is constant onHi+1 andHi+1 reachesqi+1 crossingRδi+1(qi+1). In addition, settingΨi+1 and
Gi+1 as in (59) withi replaced byi + 1, we have, thanks to (58), that(Gi+1,Ψi+1, (qi+1, δi+1)) satisfies (b)–(e
replacing everywherei with i + 1, see Fig. 9.

Therefore we can iterate the algorithm as specified above. SinceΓ ∈Qfin(E) we have�SingΓ < +∞, hence the
algorithm stops after a finite numbern of steps. Furthermoreqn = pj1 ∈ Sing∂E \{p1}. Indeed, if by contradiction
qn = p1, from (b)–(e) we could iterate the algorithm also at stepn + 1.
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We now define

(σ1) := H1 ∪ · · · ∪ Hn.

SinceHi andHi+1 haveqi as a boundary point and belong to opposite half planes with respect to the n
line to Gi at qi , using Lemma 4.1 we can findσ1 ∈ H 2,p(0,1) parametrized with constant speed and such
(σ1) =⋃n

i=1 Hi ⊂ (Γ ), σ1(0) = p1, σ1(1) = pj1.
Construction ofσ2. In order to obtain(σ2) (which is meaningful in the case that the number of cusps is la

than 2) we make a similar construction, but taking into account that parts of(Γ ) have already been “deleted
with a suitable weight in the construction ofσ1. As we shall see, we will also modify the setE locally around
the two pointsp1, pj1 in such a way thatp1 and pj1 becomes regular points of the new set. We start f
(G1

0,Ψ 1
0 , (pj2,+1)), wherepj2 ∈ Sing∂E \{p1,pj1}, andG1

0,Ψ 1
0 are obtained as follows. Let

Ψ̃ 1
0 (z) :=

{
θΓ (z) − 2�{σ−1

1 (z)} if z ∈ (σ1),
θΓ (z) if z ∈ (Γ ) \ (σ1),

G̃1
0 := {z ∈ (Γ ) : Ψ̃ 1

0 (z) > 0
}
.

Sincep1,pj1 are simple cusp points, form ∈ {1, j1} we have

R(pm) ∩ ∂E = R+(pm) ∩ ∂E = graph(φm
1 ) ∪ graph(φm

2 ),

whereφm
1 , φm

2 are functions of classH 2,p. Now, for m ∈ {1, j1}, we replace graph(φm
1 ) ∪ graph(φm

2 ) with the
support of a curveαm ∈ H 2,p(0,1) such that:(αm) ⊂ R(pm); (αm) ∩ (Γ ) ∩ int(R(pm)) = {pm}; αm joins the two
points graph(φm

1 ) ∩ ∂R+(pm), graph(φm
2 ) ∩ ∂R+(pm); αm intersects(Γ ) tangentially. Then we define

Ψ 1
0 :=


Ψ̃ 1

0 on G̃1
0 \⋃m∈{1,j1}, l∈{1,2} graph(φm

l ),

Ψ̃ 1
0 − 1 on

⋃
m∈{1,j1}, l∈{1,2} graph(φm

l ),

1 on(α1) ∪ (αj1),

G1
0 := {z ∈ G̃1

0 : Ψ 1
0 (z) > 0

}
.

By constructionΨ 1
0 verifies the train tracks property onG1

0 and everyz ∈ G1
0 admits a nice rectangle forG1

0
at z. Hence we can repeat the construction we used to obtainσ1 to get σ2 ∈ H 2,p(0,1) joining pj2,pj3 ∈
Sing∂E \{p1,pj1} with pj2 �= pj3. Note that(σ2) ⊂ (Γ ).

Iterating this argument exactlyM times, we obtain the desiredσΓ ∈ Σ(E). Now we observe that, sinc
(σi) ⊂ (Γ ), θΓ (z) � 2

∑M
i=1 �{σ−1

i (z)} by construction and(Γ ) ⊇ ∂E, we also have (57). This concludes t
proof ofstep1.

Step2. Givenσ = {σ1, . . . , σM } ∈ Σ(E) we can findΓσ = {γ1, . . . , γm} ∈ Ao(E) such that

F(Γσ ) =
∫

Reg∂E

[
1+ |κ∂E|p]dH1 + 2F(σ ). (60)

We start noticing that if we set

G :=
M⋃
i=1

(σi) ∪ ∂E, Ψ :G → N \ {0}, Ψ (z) :=
{

2
∑M

i=1 �{σ−1
i (z)} if z ∈⋃M

i=1(σi) \ Reg∂E ,

1+ 2
∑M

i=1 �{σ−1
i (z)} if z ∈ Reg∂E ,

we have thatG admits a nice rectangle at anyz ∈ G, Ψ verifies the train tracks property onG and ∂E =
{z ∈ G: Ψ (z) ≡ 1 (mod2)}. Recall that since Sing∂E is finite, then Reg∂E consists of a finite number of (relative
connected components, whose (relative) boundary is composed by at most two distinct points of Sing∂E .

For everypi ∈ Sing∂E let R(pi) be a nice rectangle forG at pi such thatR(pi) ∩ Sing∂E = {pi}. Recall
that for everypi ∈ Sing∂E the unit vectorν(pi) normal to G at pi is such thatR+(pi) ∩ Reg∂E �= ∅ and
R−(pi) ∩ Reg∂E = ∅.
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Construction ofγ1. We will constructγ1 by gluing together the parametrizations of the elements of a fi
ordered chain composed by oriented relative connected components of Reg∂E and oriented supports of elements
σ . Let (α) ⊂ G be the support of a curveα of classH 2,p connectingpi,pj ∈ Sing∂E (with pi,pj not necessarily
distinct) such thatα has constant speed. From now on by writing(α, (pi,pj )) we mean that we move along(α)

starting frompi and reachingpj .
Let K1 be a relative connected component of Reg∂E . If K1 does not have relative boundary thenK1 is an

embedded closed curve of classH 2,p and hence we can find a curveγ1 ∈ H 2,p(S1) which is a constant spee
oriented parametrization ofK1 and we stop. Let us suppose that∂K1 = {p1,p2} with p1,p2 ∈ Sing∂E not
necessarily distinct. We setF1 = (α1, (p1,p2)), whereα1 is the arc length parametrization ofK1. Suppose that we
have already constructed a chain

Fi = (α1, (p1,p2)
)
,
(
α2, (p2,p3)

)
, . . . ,

(
αi−1, (pi−1,pi)

)
,
(
αi, (pi,pi+1)

)
,

such that

(a) pl ∈ Sing∂E for everyl ∈ {1, . . . , i + 1};
(b) if l is oddαl is the arc length parametrization of one of the relative connected components of Reg∂E having

pl,pl+1 as boundary points;
(c) if l is evenαl is the arc length parametrization of the support of the uniqueσil connectingpl,pl+1;
(d) if l �= m are both odd then(αl) ∩ (αm) = ∅; if l is even there is at most an evenm �= l such that(αl) = (αm).

Firstly we notice that, since ifl is odd (respectively even)αl starts crossingR+(pl) (respectivelyR−(pl)) and
reachespl+1 crossingR+(pl+1) (respectivelyR−(pl+1)), thanks to Lemma 4.1, we can glue together all theαl

in the order, and obtain a unique constant speed curveβi ∈ H 2,p(0,1) whose support is given by
⋃i

l=1(αl). In
addition, thanks to (d) we have thatβi satisfies

�
{
β−1

i (z)
}

� Ψ (z) ∀z ∈ (βi), (61)

henceβi covers(σi) at most twice and once each (relative) connected component of Reg∂E ∩(βi).
Now if i is odd (respectively even) and we can find a curveσj having as starting or ending pointpi+1

(respectively a connected componentK of Reg∂E havingpi+1 as boundary point) such that there is at most
evenl ∈ {1, . . . , i} such that(αl) = (σj ) (respectively for every oddl ∈ {1, . . . , i} we have(αl) �= K), then we set

Fi+1 := Fi ,
(
αi+1, (pi+1,pi+2)

)
,

whereαi+1 is the arc length parametrization of(σj ) (respectively ofK) and pi+2 is the other extreme ofσj

(respectively{pi+1,pi+2} = ∂K). Otherwise we stop.
Since Reg∂E consists of a finite number of (relative) connected components andσ consists of a finite number o

curves, the above construction stops after a finite numbern of steps. It is immediate to check thatn > 3. We claim
thatn is even andpn+1 = p1. Suppose by contradiction thatn is odd. Thenαn parametrizes a connected compon
K̃ of Reg∂E such that{pn,pn+1} is the relative boundary of̃K andn � 5. Furthermore as our construction sto
there are two even numbersl,m ∈ {1, . . . , n − 1}, l < m such that(αl) = (αm) = (σj ), whereσj is the unique
element ofσ havingpn+1 as starting or ending point.

This means that we crossed twiceR−(pn+1) at the stepm � n − 1. If l � m < n − 1, since there is at mos
only another relative connected component of Reg∂E havingpn+1 as a boundary point, in view of (d) we have
contradiction. Ifm = n − 1 then(αn−1,pn+1,pn) and l � n − 3 (notice thatn − 3 � 2 asn � 5). Therefore as
in the previous case since there is at most only another relative connected component of Reg∂E havingpn+1 as a
boundary point, in view of (d) we have a contradiction. Hencen is even. With a similar argument and using t
fact thatn is even, one can prove thatpn+1 = p1.

As already noticed, we can find a constant speed curveβn ∈ H 2,p(0,1) such that(βn) =⋃n
l=1(αl). In addition,

as pn+1 = p1 and αn reachesp1 crossingR−(p1), while α1 moves fromp1 crossingR+(p1), we can find a
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constant speed curveγ1 ∈ H 2,p(S1) such that(γ1) = (βn) and also by (61)�{γ −1
1 (z)} = �{β−1

n (z)} � Ψ (z) for
everyz ∈ (γ1).

Construction ofγ2. To obtainγ2 we repeat the same construction used to obtainγ1, but this time we star
from G1 := {z ∈ G: Ψ1(z) > 0}, whereΨ1(z) := Ψ (z) − �{γ −1

1 (z)} and taking into account thatγ2 verifies
�{γ −1

2 (z)} � Ψ1(z).
Since the number of connected components of Reg∂E is finite and each component ofσ starts and end

at a boundary point of a relative connected component of Reg∂E , iterating this procedure we obtainΓσ :=
{γ1, . . . , γm} such that(Γσ ) =⋃M

i=1(σi) ∪ ∂E andθΓσ = Ψ . Hence (60) holds. Moreover, since by construct
{z ∈ (Γσ ): θΓσ (z) ≡ 1(mod 2)} = ∂E∗, by Proposition 3.13 we also haveΓσ ∈Ao(E).

As a consequence ofstep2 and (42) we get

F(E) �
∫

Reg∂E

[
1+ |κ∂E|p]dH1 + 2 inf

σ∈Σ(E)
F(σ ).

Hence bystep1 we deduce

F(E) =
∫

Reg∂E

[
1+ |κ∂E|p]dH1 + 2 inf

σ∈Σ(E)
F(σ ).

The proof of the theorem then follows from the following final step.
Step3. There existsσ ∈ Σ(E) such that∫

Reg∂E

[
1+ |κ∂E|p]dH1 + 2F(σ) =

∫
Reg∂E

[
1+ |κ∂E|p]dH1 + 2 inf

σ∈Σ(E)
F(σ ). (62)

Let Γ be a minimal element inA(E). Thanks to Theorem 6.3 we can pick a sequence{Γn} ⊂ H 2,p(S)∩Qfin(E)

converging toΓ in H 2,p. Let σΓn be the elements ofΣ(E) constructed instep1, i.e., such that (57) holds withΓ
replaced byΓn. Since(σΓn) ⊂ (Γn) we get

F(E) � lim sup
n→∞

∫
Reg∂E

[
1+ |κ∂E|p]dH1 + 2F(σΓn) � lim

n→∞F(Γn) =F(E).

Due to the strong convergence of the sequence{Γn} and the finiteness of Sing∂E , we can find a subsequence
{σn} which converges to a certainσ ∈ Σ(E). Using the lower semicontinuity ofF onΣ(E) we have (55). �

Eventually let us sketch very briefly how the representation formula (55) can be proved removi
hypothesis that every element of Sing∂E is a simple cusp point (see [5] for a more detailed proof). LetM :=
1
2

∑
p∈Sing∂E

ω∂E(p). Recall thatM ∈ N by Theorem 8.4. In order to consider each singular point with the corre
multiplicity, let us represent the set{q ∈ Sing∂E: ω∂E(q) �= 0} = {p̂1, . . . , p̂d} as follows:{

q ∈ Sing∂E : ω∂E(q) �= 0
}= {p1,p2, . . . , p2M},

whered � 2M, pj := p̂1 for every 1� j � ω∂E(p1), andpj := p̂i for every j with
∑i−1

h=1 ω∂E(p̂h) � j �∑i
h=1 ω∂E(p̂h) and everyi = 2, . . . , d .

Definition 8.7.We defineΣ(E) as the set of all collections{σ1, . . . , σM} of curves such that properties (i) and (
of Definition 8.5 hold, and

(iii) σi(0), σi(1) ∈ Sing∂E for every i ∈ {1, . . . ,M}, and there exists a bijective application between{σ1(0),

σ1(1), . . . , σM(0), σM(1)} and{q ∈ Sing∂E : ω∂E(q) �= 0};
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Fig. 10. (a) shows the easiest example of formula (55): ifE is the set consisting of two drops (as in Fig. 1), thenF(E) equals∫
Reg∂E

[1 + |κ∂E |p]dH1 plus twice the distance between the twosimple cusp points. (b) and (c) (whereE consists of four drops) show

thatΣ(E) does not necessarily reduce to a unique possible collection{σ1, . . . , σM }.

(iv) for everyi ∈ {1, . . . ,M} either

dσi

dt
(0) is parallel toRcν

(
σi(0)

)
and

dσi

dt
(1) is parallel toRν

(
σi(1)

)
or

dσi

dt
(0) is parallel toRν

(
σi(0)

)
and

dσi

dt
(1) is parallel toRcν

(
σi(1)

)
,

whereRc (respectivelyR) denotes the rotation ofπ/2 in clockwise (respectively counterclockwise) order.

Notice that (iii) implies that fori ∈ {1, . . . ,m} we haveσi(0) = pi0, σi(1) = pi1 ∈ Sing∂E andi0 �= i1 (however
the pointspi0 andpi1 may coincide).

The proof of (55) then follows by

(a) suitably approximatingE with a sequence{En} of sets obtained by modifyingE locally around each poin
of Sing∂E in such a way that∂En = ∂E outside the union of a family of nice rectangles of diameter stri
smaller than 1/2n covering Sing∂E , and in addition Sing∂En

is composed only by simple cusp points;
(b) suitably passing to the limit asn → +∞ in the formula (55) whereE is replaced byEn, which is valid thanks

to Theorem 8.6, see [5].

8.1. A counterexample

Using Theorem 8.6 we show an example of a setE for which the minimum in (44) is not attained.

Proposition 8.8.There exists a setE with �Sing∂E = 2 such thatF(E) < +∞ and the minimum ofF over the
classQfin(E) in (44) is not achieved.

Proof. Let Ej with j = 1,2,3 be as in Fig. 7: they are three connected sets, whose closure are pairwise d
The setE3 is smooth and contained in{y � 0}, while Ei , i = 1,2, are smooth except for the pointpi , which is
a simple cusp point,p1 = (−1,0), p2 = (0,1). The unoriented tangent to∂Ei at pi is thex-axis, i = 1,2. We
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suppose that the oscillating part of∂E3 touches the segment]−1,1[×{0} an infinite number of times. Since th
segment joiningp1 andp2 is an absolute minimizer forF in Σ(E) the thesis follows from Theorem 8.6.�
Corollary 8.9. There exists a setE ⊂ R2 such thatF(E) < +∞, with only two simple cusp points and such th
the minimal system inA(E) has multiplicity equal to3 on a set of positiveH1 measure.

Proof. It is enough to choose, in Proposition 8.8, the setE3 in such a way that∂E3 intersects]−1,1[×{0} on a set
of positiveH1 measure. �
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