On classifie les systèmes holonomes d'équations (micro) differentielles de multiplicité un dont le support est un espace analytique complexe Lagrangien, singulier, irréductible et contenu dans une sous-varieté lisse de codimension maximal. On montre que leur solutions sont en rapport avec des fonctions kFk−1 hypergeométriques sur la sphère de Riemann.
We classify the holonomic systems of (micro) differential equations of multiplicity one along a singular Lagrangian irreducible variety contained in an involutive submanifold of maximal codimension. We show that their solutions are related to kFk−1 hypergeometric functions on the Riemann sphere.
Publié le :
@article{CRMATH_2002__335_2_171_0, author = {Neto, Orlando and Silva, Pedro C.}, title = {Holonomic systems with solutions ramified along a~cusp}, journal = {Comptes Rendus. Math\'ematique}, pages = {171--176}, publisher = {Elsevier}, volume = {335}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02436-6}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02436-6/} }
TY - JOUR AU - Neto, Orlando AU - Silva, Pedro C. TI - Holonomic systems with solutions ramified along a cusp JO - Comptes Rendus. Mathématique PY - 2002 SP - 171 EP - 176 VL - 335 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02436-6/ DO - 10.1016/S1631-073X(02)02436-6 LA - en ID - CRMATH_2002__335_2_171_0 ER -
%0 Journal Article %A Neto, Orlando %A Silva, Pedro C. %T Holonomic systems with solutions ramified along a cusp %J Comptes Rendus. Mathématique %D 2002 %P 171-176 %V 335 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02436-6/ %R 10.1016/S1631-073X(02)02436-6 %G en %F CRMATH_2002__335_2_171_0
Neto, Orlando; Silva, Pedro C. Holonomic systems with solutions ramified along a cusp. Comptes Rendus. Mathématique, Tome 335 (2002) no. 2, pp. 171-176. doi : 10.1016/S1631-073X(02)02436-6. http://www.numdam.org/articles/10.1016/S1631-073X(02)02436-6/
[1] The monodromy of the hypergeometric function nFn−1, Invent. Math., Volume 95 (1989), pp. 325-354
[2] Analytic -modules and Applications, Kluwer Academic, 1993
[3] On holonomic systems of microdifferential equations III, Publ. Res. Inst. Math. Sci., Volume 17 (1981), pp. 813-979
[4] Hypergeometric functions, Indag. Math., Volume 23 (1961), pp. 361-403
[5] A microlocal Riemann–Hilbert correspondence, Comp. Math., Volume 127 (2001), pp. 229-241
[6] Microdifferential Systems in the Complex Domain, Springer-Verlag, 1985
[7] Micro-local analysis of prehomogeneous vector spaces, Invent. Math., Volume 62 (1980), pp. 117-178
Cité par Sources :