On obtient des estimations concrètes pour le largeur symplectique de Gromov pour les variétés toriques par ses données combinatoires. Comme un sous-produit, quelques inéqualités combinatoires dans la théorie de polytope sont obtenus.
We shall give concrete estimations for the Gromov symplectic width of toric manifolds in combinatorial data. As by-products some combinatorial inequalities in the polytope theory are obtained.
Accepté le :
@article{CRMATH_2002__334_10_889_0, author = {Lu, Guangcun}, title = {Symplectic capacities of toric manifolds and combinatorial inequalities}, journal = {Comptes Rendus. Math\'ematique}, pages = {889--892}, publisher = {Elsevier}, volume = {334}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02357-9}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02357-9/} }
TY - JOUR AU - Lu, Guangcun TI - Symplectic capacities of toric manifolds and combinatorial inequalities JO - Comptes Rendus. Mathématique PY - 2002 SP - 889 EP - 892 VL - 334 IS - 10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(02)02357-9/ DO - 10.1016/S1631-073X(02)02357-9 LA - en ID - CRMATH_2002__334_10_889_0 ER -
%0 Journal Article %A Lu, Guangcun %T Symplectic capacities of toric manifolds and combinatorial inequalities %J Comptes Rendus. Mathématique %D 2002 %P 889-892 %V 334 %N 10 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(02)02357-9/ %R 10.1016/S1631-073X(02)02357-9 %G en %F CRMATH_2002__334_10_889_0
Lu, Guangcun. Symplectic capacities of toric manifolds and combinatorial inequalities. Comptes Rendus. Mathématique, Tome 334 (2002) no. 10, pp. 889-892. doi : 10.1016/S1631-073X(02)02357-9. http://www.numdam.org/articles/10.1016/S1631-073X(02)02357-9/
[1] The Topology of Torus Actions on Symplectic Manifolds, Progress in Math., 93, Birkhäuser, 1991
[2] Quantum cohomology rings of toric manifolds, Astérisque, Volume 218 (1993), pp. 9-34
[3] Symplectic topology on subcritical manifolds, Comment. Math. Helv., Volume 76 (2001), pp. 712-753
[4] L2-vanishing theorems for positive line bundles and adjunction theory (Catanese, F.; Ciliberto, C., eds.), Transcendental Methods in Algebraic Geometry, Lecture Notes Math., 1646, Springer-Verlag, 1992, pp. 1-97
[5] Moment maps and combinatorial invariants of Hamiltonian -spaces, Progress in Math., 122, Birkhäuser, 1994
[6] G.C. Lu, Gromov–Witten invariants and pseudo symplectic capacities, Preprint, math.SG/0103195, v6, 6 September, 2001
[7] F. Schlenk, On symplectic folding, Preprint, math.SG/9903086, March 1999
[8] An update on (small) quantum cohomology (Phong, D.H.; Vinet, L.; Yau, S.T., eds.), Mirror Symmetry III, International Press, 1999, pp. 279-312
[9] Rigidité symplectique dans le cotangent de , Duke Math. J., Volume 59 (1989), pp. 227-231
[10] Metric and isoperimetric problems in symplectic geometry, J. Amer. Math. Soc., Volume 13 (2000), pp. 411-431
Cité par Sources :