Symplectic capacities of toric manifolds and combinatorial inequalities
[Capacités symplectiques de variétés toriques et inéqualités combinatoires]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 10, pp. 889-892.

On obtient des estimations concrètes pour le largeur symplectique de Gromov pour les variétés toriques par ses données combinatoires. Comme un sous-produit, quelques inéqualités combinatoires dans la théorie de polytope sont obtenus.

We shall give concrete estimations for the Gromov symplectic width of toric manifolds in combinatorial data. As by-products some combinatorial inequalities in the polytope theory are obtained.

Reçu le :
Accepté le :
DOI : 10.1016/S1631-073X(02)02357-9
Lu, Guangcun 1

1 Department of Mathematics, Beijing Normal University, Beijing 100875, PR China
@article{CRMATH_2002__334_10_889_0,
     author = {Lu, Guangcun},
     title = {Symplectic capacities of toric manifolds and combinatorial inequalities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {889--892},
     publisher = {Elsevier},
     volume = {334},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02357-9},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02357-9/}
}
TY  - JOUR
AU  - Lu, Guangcun
TI  - Symplectic capacities of toric manifolds and combinatorial inequalities
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 889
EP  - 892
VL  - 334
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02357-9/
DO  - 10.1016/S1631-073X(02)02357-9
LA  - en
ID  - CRMATH_2002__334_10_889_0
ER  - 
%0 Journal Article
%A Lu, Guangcun
%T Symplectic capacities of toric manifolds and combinatorial inequalities
%J Comptes Rendus. Mathématique
%D 2002
%P 889-892
%V 334
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02357-9/
%R 10.1016/S1631-073X(02)02357-9
%G en
%F CRMATH_2002__334_10_889_0
Lu, Guangcun. Symplectic capacities of toric manifolds and combinatorial inequalities. Comptes Rendus. Mathématique, Tome 334 (2002) no. 10, pp. 889-892. doi : 10.1016/S1631-073X(02)02357-9. http://www.numdam.org/articles/10.1016/S1631-073X(02)02357-9/

[1] Audin, M. The Topology of Torus Actions on Symplectic Manifolds, Progress in Math., 93, Birkhäuser, 1991

[2] Batyrev, V.V. Quantum cohomology rings of toric manifolds, Astérisque, Volume 218 (1993), pp. 9-34

[3] Biran, P.; Cieliebak, K. Symplectic topology on subcritical manifolds, Comment. Math. Helv., Volume 76 (2001), pp. 712-753

[4] Demailly, J.-P. L2-vanishing theorems for positive line bundles and adjunction theory (Catanese, F.; Ciliberto, C., eds.), Transcendental Methods in Algebraic Geometry, Lecture Notes Math., 1646, Springer-Verlag, 1992, pp. 1-97

[5] Guillemin, V. Moment maps and combinatorial invariants of Hamiltonian 𝕋 n -spaces, Progress in Math., 122, Birkhäuser, 1994

[6] G.C. Lu, Gromov–Witten invariants and pseudo symplectic capacities, Preprint, math.SG/0103195, v6, 6 September, 2001

[7] F. Schlenk, On symplectic folding, Preprint, math.SG/9903086, March 1999

[8] Siebert, B. An update on (small) quantum cohomology (Phong, D.H.; Vinet, L.; Yau, S.T., eds.), Mirror Symmetry III, International Press, 1999, pp. 279-312

[9] Sikorav, J.C. Rigidité symplectique dans le cotangent de 𝕋 n , Duke Math. J., Volume 59 (1989), pp. 227-231

[10] Viterbo, C. Metric and isoperimetric problems in symplectic geometry, J. Amer. Math. Soc., Volume 13 (2000), pp. 411-431

Cité par Sources :