Interpolation orbits in couples of 𝐋 𝐩 spaces
[Orbites d'interpolation pour les couples d'espaces Lp]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 10, pp. 881-884.

Nous considérons les opérateurs T partant d'un couple d'espaces Lp à poids {Lp0(U0), Lp1(U1)} à valeurs dans {Lq0(V0),Lq1(V1)}, où 1⩽p0, p1, q0, q1⩽∞, et donnons une description de l'orbite d'interpolation de tout élément aLp0(U0)+Lp1(U1) ; autrement dit nous décrivons l'espace de toutes les images {Ta}, où T parcourt l'espace des opérateurs linéaires bornés de {Lp0(U0),Lp1(U1)} dans {Lq0(V0),Lq1(V1)}. Nous montrons que l'orbite d'interpolation est obtenue par la méthode des moyennes de Lions–Peetre avec un paramètre fonctionnel, et aussi par la K-méthode avec un espace d'Orlicz à poids comme paramètre fonctionnel.

We consider linear operators T mapping a couple of weighted Lp spaces {Lp0(U0), Lp1(U1)} into {Lq0(V0),Lq1(V1)} for any 1⩽p0, p1, q0, q1⩽∞, and describe the interpolation orbit of any aLp0(U0)+Lp1(U1) that is we describe a space of all {Ta}, where T runs over all linear bounded mappings from {Lp0(U0),Lp1(U1)} into {Lq0(V0),Lq1(V1)}. We show that interpolation orbit is obtained by the Lions–Peetre method of means with functional parameter as well as by the K-method with a weighted Orlicz space as a parameter.

Reçu le :
Accepté le :
DOI : 10.1016/S1631-073X(02)02351-8
Ovchinnikov 1

1 Voronezh State University, Universitetskaia pl., 1, Voronezh, 394693, Russia
@article{CRMATH_2002__334_10_881_0,
     author = {Ovchinnikov},
     title = {Interpolation orbits in couples of $ \mathbf{L}_{\mathbf{p}}$ spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {881--884},
     publisher = {Elsevier},
     volume = {334},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02351-8},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02351-8/}
}
TY  - JOUR
AU  - Ovchinnikov
TI  - Interpolation orbits in couples of $ \mathbf{L}_{\mathbf{p}}$ spaces
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 881
EP  - 884
VL  - 334
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02351-8/
DO  - 10.1016/S1631-073X(02)02351-8
LA  - en
ID  - CRMATH_2002__334_10_881_0
ER  - 
%0 Journal Article
%A Ovchinnikov
%T Interpolation orbits in couples of $ \mathbf{L}_{\mathbf{p}}$ spaces
%J Comptes Rendus. Mathématique
%D 2002
%P 881-884
%V 334
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02351-8/
%R 10.1016/S1631-073X(02)02351-8
%G en
%F CRMATH_2002__334_10_881_0
Ovchinnikov. Interpolation orbits in couples of $ \mathbf{L}_{\mathbf{p}}$ spaces. Comptes Rendus. Mathématique, Tome 334 (2002) no. 10, pp. 881-884. doi : 10.1016/S1631-073X(02)02351-8. http://www.numdam.org/articles/10.1016/S1631-073X(02)02351-8/

[1] Bennett, G. Inclusion mappings between lp spaces, J. Funct. Anal., Volume 13 (1973), pp. 20-27

[2] Brudnyi, Ju.A.; Krugliak, N.Ya. Interpolation Functors and Interpolation Spaces. I, North-Holland, Amsterdam, 1991

[3] Dmitriev, V.I. On interpolation of operators in Lp spaces, Dokl. Akad. Nauk SSSR, Volume 260 (1981), pp. 1051-1054

[4] Janson, S. Minimal and maximal methods in interpolation, J. Funct. Anal., Volume 44 (1981), pp. 50-73

[5] Lions, J.-L.; Peetre, J. Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math., Volume 19 (1964), pp. 5-68

[6] Ovchinnikov, V.I. An exact interpolation theorem in Lp spaces, Dokl. Akad. Nauk SSSR, Volume 272 (1983), pp. 300-303

[7] Ovchinnikov, V.I. Description of orbits, Israel Math. Conf. Proc., Volume 5 (1992), pp. 291-292

[8] Ovchinnikov, V.I. On the description of interpolation orbits in couples of Lp spaces, when they are not described by the K-method, Israel Math. Conf. Proc., Volume 5 (1992), pp. 187-206

[9] Ovchinnikov, V.I. The method of orbits in interpolation theory, Math. Reports, Volume 1 (1984) no. 2, pp. 349-516

[10] Sparr, G. Interpolation des espaces Lwp, C. R. Acad. Sci. Paris, Serie A–B, Volume 278 (1974), pp. 491-492

[11] Sparr, G. Interpolation of weighted Lp spaces, Studia Math., Volume 62 (1978), pp. 229-271

Cité par Sources :