Meromorphic tensor equivalence for Yangians and quantum loop algebras
Publications Mathématiques de l'IHÉS, Tome 125 (2017), pp. 267-337.

Let g be a complex semisimple Lie algebra, and Yħ(g), Uq(Lg) the corresponding Yangian and quantum loop algebra, with deformation parameters related by q=eπιħ. When ħ is not a rational number, we constructed in Gautam and Toledano Laredo (J. Am. Math. Soc. 29:775, 2016) a faithful functor Γ from the category of finite-dimensional representations of Yħ(g) to those of Uq(Lg). The functor Γ is governed by the additive difference equations defined by the commuting fields of the Yangian, and restricts to an equivalence on a subcategory of Repfd(Yħ(g)) defined by choosing a branch of the logarithm. In this paper, we construct a tensor structure on Γ and show that, if |q|1, it yields an equivalence of meromorphic braided tensor categories, when Yħ(g) and Uq(Lg) are endowed with the deformed Drinfeld coproducts and the commutative part of their universal R-matrices. This proves in particular the Kohno–Drinfeld theorem for the abelian qKZ equations defined by Yħ(g). The tensor structure arises from the abelian qKZ equations defined by an appropriate regularisation of the commutative part of the R-matrix of Yħ(g).

DOI : 10.1007/s10240-017-0089-9
Gautam, Sachin 1 ; Toledano Laredo, Valerio 2

1 Perimeter Institute for Theoretical Physics 31 Caroline Street N. N2L 2Y5 Waterloo ON Canada
2 Department of Mathematics, Northeastern University 360 Huntington Avenue 02115 Boston MA USA
@article{PMIHES_2017__125__267_0,
     author = {Gautam, Sachin and Toledano Laredo, Valerio},
     title = {Meromorphic tensor equivalence for {Yangians} and quantum loop algebras},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {267--337},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {125},
     year = {2017},
     doi = {10.1007/s10240-017-0089-9},
     zbl = {1432.17012},
     mrnumber = {3668651},
     language = {en},
     url = {http://www.numdam.org/articles/10.1007/s10240-017-0089-9/}
}
TY  - JOUR
AU  - Gautam, Sachin
AU  - Toledano Laredo, Valerio
TI  - Meromorphic tensor equivalence for Yangians and quantum loop algebras
JO  - Publications Mathématiques de l'IHÉS
PY  - 2017
SP  - 267
EP  - 337
VL  - 125
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - http://www.numdam.org/articles/10.1007/s10240-017-0089-9/
DO  - 10.1007/s10240-017-0089-9
LA  - en
ID  - PMIHES_2017__125__267_0
ER  - 
%0 Journal Article
%A Gautam, Sachin
%A Toledano Laredo, Valerio
%T Meromorphic tensor equivalence for Yangians and quantum loop algebras
%J Publications Mathématiques de l'IHÉS
%D 2017
%P 267-337
%V 125
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U http://www.numdam.org/articles/10.1007/s10240-017-0089-9/
%R 10.1007/s10240-017-0089-9
%G en
%F PMIHES_2017__125__267_0
Gautam, Sachin; Toledano Laredo, Valerio. Meromorphic tensor equivalence for Yangians and quantum loop algebras. Publications Mathématiques de l'IHÉS, Tome 125 (2017), pp. 267-337. doi : 10.1007/s10240-017-0089-9. http://www.numdam.org/articles/10.1007/s10240-017-0089-9/

[1.] Beck, J.; Kac, V. G. Finite-dimensional representations of quantum affine algebras at roots of unity, J. Am. Math. Soc., Volume 9 (1996), pp. 391-423 | DOI | MR | Zbl

[2.] Birkhoff, G. D. General theory of linear difference equations, Trans. Am. Math. Soc., Volume 12 (1911), pp. 243-284 | DOI | MR | Zbl

[3.] Borodin, A. Isomonodromy transformations of linear systems of difference equations, Ann. Math., Volume 160 (2004), pp. 1141-1182 | DOI | MR | Zbl

[4.] Damiani, I. La R-matrice pour les algèbres quantiques de type affine non tordu, Ann. Sci. Éc. Norm. Supér., Volume 13 (1998), pp. 493-523 | DOI | Numdam | Zbl

[5.] de Moura, A. A. Elliptic dynamical R-matrices from the monodromy of the q-Knizhnik–Zamolodchikov equations for the standard representation of Uq(sl˜n+1), Asian J. Math., Volume 7 (2003), pp. 91-114 | DOI | MR | Zbl

[6.] V. G. Drinfeld, A new realization of Yangians and quantized affine algebras, Preprint FTINT (1986), pp. 30–86.

[7.] Drinfeld, V. G. A new realization of Yangians and quantum affine algebras, Sov. Math. Dokl., Volume 36 (1988), pp. 212-216 | MR

[8.] Enriquez, B.; Khoroshkin, S.; Pakuliak, S. Weight functions and Drinfeld currents, Commun. Math. Phys., Volume 276 (2007), pp. 691-725 | DOI | MR | Zbl

[9.] Etingof, P.; Moura, A. On the quantum Kazhdan–Lusztig functor, Math. Res. Lett., Volume 9 (2002), pp. 449-463 | DOI | MR | Zbl

[10.] Faraut, J. Analysis on Lie Groups, an Introduction (2008) | DOI | Zbl

[11.] Frenkel, I. B.; Reshetikhin, N. Yu. Quantum affine algebras and holonomic difference equations, Commun. Math. Phys., Volume 146 (1992), pp. 1-60 | DOI | MR | Zbl

[12.] S. Gautam and V. Toledano Laredo, Quantum Kazhdan–Lusztig equivalence in the rational setting, in preparation.

[13.] Gautam, S.; Toledano Laredo, V. Yangians, quantum loop algebras and abelian difference equations, J. Am. Math. Soc., Volume 29 (2016), pp. 775-824 | DOI | MR | Zbl

[14.] Hernandez, D. Representations of quantum affinizations and fusion product, Transform. Groups, Volume 10 (2005), pp. 163-200 | DOI | MR | Zbl

[15.] Hernandez, D. Drinfeld coproduct, quantum fusion tensor category and applications, Proc. Lond. Math. Soc. (3), Volume 95 (2007), pp. 567-608 | DOI | MR | Zbl

[16.] Hernandez, D.; Leclerc, B. Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math., Volume 2015 (2015), pp. 77-126 | MR | Zbl

[17.] Kazhdan, D.; Lusztig, G. Tensor structures arising from affine Lie algebras. I, II, J. Am. Math. Soc., Volume 6 (1993), pp. 905-947 (949–1011) | DOI | MR | Zbl

[18.] Kazhdan, D.; Lusztig, G. Tensor structures arising from affine Lie algebras. III, J. Am. Math. Soc., Volume 7 (1994), pp. 335-381 | DOI | MR | Zbl

[19.] Kazhdan, D.; Lusztig, G. Tensor structures arising from affine Lie algebras. IV, J. Am. Math. Soc., Volume 7 (1994), pp. 383-453 | DOI | MR | Zbl

[20.] Kazhdan, D.; Soibelman, Y. S. Representations of quantum affine algebras, Sel. Math. New Ser., Volume 1 (1995), pp. 537-595 | DOI | MR | Zbl

[21.] Khoroshkin, S.; Tolstoy, V. Yangian double, Lett. Math. Phys., Volume 36 (1996), pp. 373-402 | DOI | MR | Zbl

[22.] Krichever, I. M. Analytic theory of difference equations with rational and elliptic coefficients and the Riemann–Hilbert problem, Russ. Math. Surv., Volume 59 (2004), pp. 1117-1154 | DOI | MR | Zbl

[23.] Levendorskii, S. Z. On generators and defining relations of Yangians, J. Geom. Phys., Volume 12 (1993), pp. 1-11 | DOI | MR

[24.] D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, | arXiv

[25.] A. Okounkov, Computations in quantum K-theory, Lectures at Northeastern University, March 17, 19 and 20, 2015.

[26.] Sauloy, J. Systèmes aux q-différences singuliers réguliers: classification, matrice de connexion et monodromie, Ann. Inst. Fourier (Grenoble), Volume 50 (2000), pp. 1021-1071 | DOI | Numdam | MR | Zbl

[27.] Smirnov, F. A. Form Factors in Completely Integrable Models of Quantum Field Theory (1992) | Zbl

[28.] Soibelman, Y. S. The meromorphic braided category arising in quantum affine algebras, Int. Math. Res. Not., Volume 19 (1999), pp. 1067-1079 | MR | Zbl

[29.] Tarasov, V.; Varchenko, A. Geometry of q-hypergeometric functions as a bridge between Yangians and quantum affine algebras, Invent. Math., Volume 128 (1997), pp. 501-588 | DOI | MR | Zbl

[30.] Tarasov, V.; Varchenko, A. Geometry of q-hypergeometric functions, quantum affine algebras and elliptic quantum groups, Astérisque, Volume 246 (1997), pp. 1-135 | Numdam | MR | Zbl

[31.] van der Put, M.; Singer, M. F. Galois Theory of Difference Equations (1997) | Zbl

Cité par Sources :