We prove a conjecture of Colmez concerning the reduction modulo of invariant lattices in irreducible admissible unitary -adic Banach space representations of with . This enables us to restate nicely the with -adic local Langlands correspondence for and deduce a conjecture of Breuil on irreducible admissible unitary completions of locally algebraic representations.
@article{PMIHES_2013__118__1_0, author = {Pa\v{s}k\={u}nas, Vytautas}, title = {The image of {Colmez{\textquoteright}s} {Montreal} functor}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--191}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {118}, year = {2013}, doi = {10.1007/s10240-013-0049-y}, mrnumber = {3150248}, zbl = {1297.22021}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-013-0049-y/} }
TY - JOUR AU - Paškūnas, Vytautas TI - The image of Colmez’s Montreal functor JO - Publications Mathématiques de l'IHÉS PY - 2013 SP - 1 EP - 191 VL - 118 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://www.numdam.org/articles/10.1007/s10240-013-0049-y/ DO - 10.1007/s10240-013-0049-y LA - en ID - PMIHES_2013__118__1_0 ER -
%0 Journal Article %A Paškūnas, Vytautas %T The image of Colmez’s Montreal functor %J Publications Mathématiques de l'IHÉS %D 2013 %P 1-191 %V 118 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://www.numdam.org/articles/10.1007/s10240-013-0049-y/ %R 10.1007/s10240-013-0049-y %G en %F PMIHES_2013__118__1_0
Paškūnas, Vytautas. The image of Colmez’s Montreal functor. Publications Mathématiques de l'IHÉS, Tome 118 (2013), pp. 1-191. doi : 10.1007/s10240-013-0049-y. http://www.numdam.org/articles/10.1007/s10240-013-0049-y/
[1.] Irreducible modular representations of GL2 of a local field, Duke Math. J., Volume 75 (1994), pp. 261-292 | DOI | MR | Zbl
[2.] Pseudodeformations, Math. Z., Volume 270 (2012), pp. 1163-1180 | DOI | MR | Zbl
[3.] Families of Galois Representations and Selmer Groups, Astérisque, 324, Soc. Math. France, Paris, 2009 | Numdam | MR | Zbl
[4.] Représentations modulaires de GL2(Q p ) et représentations galoisiennes de dimension 2, Astérisque, Volume 330 (2010), pp. 263-279 | Numdam | MR | Zbl
[5.] La correspondance de Langlands locale -adique pour , Exposé No 1017 du Séminaire Bourbaki (Astérisque), Volume 339 (2011), pp. 157-180 | Numdam | MR | Zbl
[6.] L. Berger, Central characters for smooth irreducible modular representations of GL2(Q p ), Rendiconti del Seminario Matematico della Università di Padova (F. Baldassarri’s 60th birthday), vol. 127, 2012. | Numdam | MR | Zbl
[7.] Sur quelques représentations potentiellement cristallines de GL2(Q p ), Astérisque, Volume 330 (2010), pp. 155-211 | Numdam | MR | Zbl
[8.] J.-N. Bernstein (rédigé par P. Deligne), Le ‘centre’ de Bernstein, in Représentations des groupes réductifs sur un corps local, pp. 1–32, Herman, Paris, 1984. | MR | Zbl
[9.] Demuškin groups with group actions and applications to deformations of Galois representations, Compositio, Volume 121 (2000), pp. 109-154 | DOI | MR | Zbl
[10.] Quotients of group rings arising from two dimensional representations, C.R. Acad. Sci. Paris Sér. I, Volume 312 (1991), pp. 323-328 | MR | Zbl
[11.] Algébre, Chapitre 8, Hermann, Paris, 1958 | MR
[12.] Commutative Algebra, Hermann, Paris, 1972 | Zbl
[13.] Algébre Homologique, Masson, Paris, 1980 | Zbl
[14.] Algebra I, Chapters 1–3, Springer, Berlin, 1989 | MR | Zbl
[15.] Multiplicités modulaires et représentations de GL2(Z p ) et de en l=p , Duke Math. J., Volume 115 (2002), pp. 205-310 | DOI | MR | Zbl
[16.] Sur quelques représentations modulaires et p-adiques de GL2(Q p ). I, Compositio, Volume 138 (2003), pp. 165-188 | DOI | MR | Zbl
[17.] Sur quelques représentations modulaires et p-adiques de GL2(Q p ). II, J. Inst. Math. Jussieu, Volume 2 (2003), pp. 1-36 | DOI | MR | Zbl
[18.] Invariant et série spéciale p-adique, Ann. Sci. Éc. Norm. Super., Volume 37 (2004), pp. 559-610 | MR | Zbl
[19.] Représentations p-adiques ordinaires de GL2(Q p ) et compatibilité local-global, Astérisque, Volume 331 (2010), pp. 255-315 | Numdam | MR | Zbl
[20.] Towards a Modulo p Langlands Correspondence for GL2 , Memoirs of AMS, 216, 2012 | MR | Zbl
[21.] Pseudo-compact algebras, profinite groups and class formations, J. Algebra, Volume 4 (1966), pp. 442-470 | DOI | MR | Zbl
[22.] G. Chenevier, The p-adic analytic space of pseudocharacters of a profinite group, and pseudorepresentations over arbitrary rings, . | arXiv
[23.] Représentations de GL2(Q p ) et (φ,Γ)-modules, Astérisque, Volume 330 (2010), pp. 281-509 | Numdam | MR | Zbl
[24.] Methods of Representation Theory. Volume I, Wiley, New York, 1981 | MR
[25.] Groupes Algébriques, Tome I, Masson, Paris, 1970 | MR | Zbl
[26.] Schémas en Groupes I, Lect. Notes Math, 151, Springer, Berlin, 1970 | MR | Zbl
[27.] G. Dospinescu and B. Schraen, Endomorphism algebras of p-adic representations of p-adic Lie groups, . | arXiv
[28.] p-adic L-functions and unitary completions of representations of p-adic reductive groups, Duke Math. J., Volume 130 (2005), pp. 353-392 | MR | Zbl
[29.] A local-global compatibility conjecture in the p-adic Langlands programme for GL2/Q , Pure Appl. Math. Q., Volume 2 (2006), pp. 279-393 | DOI | MR | Zbl
[30.] Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties, Astérisque, Volume 331 (2010), pp. 335-381 | Numdam | MR | Zbl
[31.] Ordinary parts of admissible representations of p-adic reductive groups II. Derived functors, Astérisque, Volume 331 (2010), pp. 383-438 | Numdam | MR | Zbl
[32.] M. Emerton, Local-global compatibility in the p-adic Langlands programme for GL2/Q. | Zbl
[33.] M. Emerton, Locally analytic vectors in representations of locally p-adic analytic groups, Memoirs of the AMS, to appear. | MR
[34.] On effaceability of certain δ-functors, Astérisque, Volume 331 (2010), pp. 439-447 | Numdam | MR | Zbl
[35.] Des catégories abéliennes, Bull. Soc. Math. Fr., Volume 90 (1962), pp. 323-448 | Numdam | MR | Zbl
[36.] Filtered modules with coefficients, Trans. Am. Math. Soc., Volume 361 (2009), pp. 2243-2261 | DOI | MR | Zbl
[37.] Sur quelques représentations supersinguliéres de , J. Algebra, Volume 324 (2010), pp. 1577-1615 | DOI | MR | Zbl
[38.] Commutative Rings, University of Chicago Press, Chicago, 1974 (revised ed.) | MR | Zbl
[39.] Moduli of finite flat group schemes and modularity, Ann. Math., Volume 170 (2009), pp. 1085-1180 | DOI | MR | Zbl
[40.] The Fontaine-Mazur conjecture for GL2 , J. Am. Math. Soc., Volume 22 (2009), pp. 641-690 | DOI | MR | Zbl
[41.] Deformations of and GL2(Q p ) representations, Astérisque, Volume 330 (2010), pp. 511-528 | Numdam | MR | Zbl
[42.] Classification of Demuškin groups, Can. J. Math., Volume 19 (1967), pp. 106-132 | DOI | MR | Zbl
[43.] A First Course in Noncommutative Rings, Springer GTM, 131, 1991 | DOI | MR | Zbl
[44.] Algebra, Springer, Berlin, 2002 (revised) | DOI | Zbl
[45.] M. Lazard, Groupes analytiques p-adiques, Publ. Math. IHES 26 (1965). | Numdam | MR | Zbl
[46.] H. Matsumura, Commutative ring theory, CUP. | MR | Zbl
[47.] Deforming Galois representations, Galois Groups over Q , Springer, New York (1989), pp. 385-437 | DOI | MR | Zbl
[48.] An introduction to the deformation theory of Galois representations, Modular Forms and Fermat’s Last Theorem, Springer, New York (1997), pp. 243-311 | DOI | MR | Zbl
[49.] Cohomology of Number Fields, Springer, Berlin, 2000 | MR | Zbl
[50.] Pseudo-représentations, Math. Ann., Volume 306 (1996), pp. 257-283 | DOI | MR | Zbl
[51.] Le foncteur des invariants sous l’action du pro-p-Iwahori de GL(2,F), J. Reine Angew. Math., Volume 635 (2009), pp. 149-185 | MR | Zbl
[52.] Yoneda extensions in abelian categories, Math. Ann., Volume 153 (1964), pp. 227-235 | DOI | MR | Zbl
[53.] D. Prasad, Locally algebraic representations of p-adic groups, appendix to [60].
[54.] Coefficient Systems and Supersingular Representations of GL2(F), Mémoires de la SMF, 99, 2004 | Numdam | MR | Zbl
[55.] On some crystalline representations of GL2(Q p ), Algebra Number Theory, Volume 3 (2009), pp. 411-421 | DOI | MR | Zbl
[56.] Extensions for supersingular representations of GL2(Q p ), Astérisque, Volume 331 (2010), pp. 317-353 | Numdam | MR | Zbl
[57.] Admissible unitary completions of locally Q p -rational representations of GL2(F), Represent. Theory, Volume 14 (2010), pp. 324-354 | DOI | MR | Zbl
[58.] V. Paškūnas, Blocks for mod p representations of GL2(Q p ), preprint (2011), . | arXiv | MR
[59.] Nonarchimedean Functional Analysis, Springer, Berlin, 2001 | MR | Zbl
[60.] -finite locally analytic representations, Represent. Theory, Volume 5 (2001), pp. 111-128 | DOI | MR | Zbl
[61.] Banach space representations and Iwasawa theory, Isr. J. Math., Volume 127 (2002), pp. 359-380 | DOI | MR | Zbl
[62.] Sur la dimension cohomologique des groupes profinis, Topology, Volume 3 (1965), pp. 413-420 | DOI | MR | Zbl
[63.] Linear Representation of Finite Groups, Springer, Berlin, 1977 | DOI | MR
[64.] Cohomologie Galoisienne, Springer, Berlin, 1997 (Cinquième édition, révisée et complétée) | DOI | MR
[65.] Galois representations associated to Siegel modular forms of low weight, Duke Math. J., Volume 63 (1991), pp. 281-332 | DOI | MR | Zbl
[66.] Blowing up of non-commutative smooth surfaces, Mem. Amer. Math. Soc., Volume 154 (2001), p. 734 | MR | Zbl
[67.] Representations modulo p of the p-adic group GL(2,F), Compos. Math., Volume 140 (2004), pp. 333-358 | DOI | MR | Zbl
Cité par Sources :