We prove that the chain-transitive sets of -generic diffeomorphisms are approximated in the Hausdorff topology by periodic orbits. This implies that the homoclinic classes are dense among the chain-recurrence classes. This result is a consequence of a global connecting lemma, which allows to build by a -perturbation an orbit connecting several prescribed points. One deduces a weak shadowing property satisfied by -generic diffeomorphisms: any pseudo-orbit is approximated in the Hausdorff topology by a finite segment of a genuine orbit. As a consequence, we obtain a criterion for proving the tolerance stability conjecture in .
@article{PMIHES_2006__104__87_0, author = {Crovisier, Sylvain}, title = {Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {87--141}, publisher = {Springer}, volume = {104}, year = {2006}, doi = {10.1007/s10240-006-0002-4}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-006-0002-4/} }
TY - JOUR AU - Crovisier, Sylvain TI - Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms JO - Publications Mathématiques de l'IHÉS PY - 2006 SP - 87 EP - 141 VL - 104 PB - Springer UR - http://www.numdam.org/articles/10.1007/s10240-006-0002-4/ DO - 10.1007/s10240-006-0002-4 LA - en ID - PMIHES_2006__104__87_0 ER -
%0 Journal Article %A Crovisier, Sylvain %T Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms %J Publications Mathématiques de l'IHÉS %D 2006 %P 87-141 %V 104 %I Springer %U http://www.numdam.org/articles/10.1007/s10240-006-0002-4/ %R 10.1007/s10240-006-0002-4 %G en %F PMIHES_2006__104__87_0
Crovisier, Sylvain. Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms. Publications Mathématiques de l'IHÉS, Tome 104 (2006), pp. 87-141. doi : 10.1007/s10240-006-0002-4. http://www.numdam.org/articles/10.1007/s10240-006-0002-4/
1. Global dominated splittings and the C1 Newhouse phenomenon, Proc. Amer. Math. Soc., 134 (2006), 2229-2237 | MR | Zbl
, , ,2. Generic diffeomorphisms on compact surfaces, Fundam. Math., 187 (2005), 127-159 | MR | Zbl
, , , ,3. Pseudo-orbit shadowing in the C1-topology, to appear in Discrete Cont. Dyn. Syst. | MR | Zbl
and ,4. Nongenericity of Ω-stability, Global analysis I, Proc. Symp. Pure Math. AMS, 14 (1970), 5-8 | Zbl
, ,5. Création de connexions en topologie C1 , Ergodic Theory Dyn. Syst., 21 (2001), 339-381 | MR | Zbl
,6. Approximation des ensembles ω-limites des difféomorphismes par des orbites périodiques, Ann. Sci. Éc. Norm. Supér., IV. Sér., 36 (2003), 173-190 | Numdam | Zbl
,7. Dynamiques symplectiques génériques, Ergodic Theory Dyn. Syst., 25 (2005), 1401-1436 | MR | Zbl
, , ,8. Récurrence et généricité, Invent. Math., 158 (2004), 33-104 | MR | Zbl
, ,9. Persistent nonhyperbolic transitive diffeomorphisms, Ann. Math., 143 (1996), 357-396 | MR | Zbl
, ,10. On maximal transitive sets of generic diffeomorphisms, Publ. Math., Inst. Hautes Étud. Sci., 96 (2003), 171-197 | EuDML | Numdam | MR | Zbl
, ,11. A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicicity or infinitely many sinks or sources, Ann. Math., 158 (2003), 355-418 | MR | Zbl
, , ,12. Pas de “shadowing lemma” pour des dynamiques partiellement hyperboliques, C. R. Acad. Sci. Paris, 330 (2000), 587-592 | Zbl
, , ,13. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer, Berlin - New York (1975) | MR | Zbl
,14. Isolated invariant sets and Morse index, AMS, Providence (1978) | MR | Zbl
,15. Homoclinic classes for C1-generic vector fields, Ergodic Theory Dyn. Syst., 23 (2003), 1-13 | MR | Zbl
, , ,16. Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl., 189 (1995), 409-423 | MR | Zbl
, ,17. Structural stability of diffeomorphisms on two-manifolds, Invent. Math., 21 (1973), 233-246 | EuDML | MR | Zbl
,18. Heteroclinic cycles and homoclinic closures for generic diffeomorphisms, J. Dyn. Differ. Equations, 15 (2003), 451-471 | MR | Zbl
, ,19. Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits, Chaos, 6 (1996), 15-31 | MR | Zbl
, , ,20. Connecting invariant manifolds and the solution of the C1-stability and Ω-stability conjectures for flows, Ann. Math., 145 (1997), 81-137 | Zbl
,21. Contribution à la théorie des champs génériques, Contrib. Differ. Equ., 2 (1963), 457-484 | MR | Zbl
,22. Contributions to the stability conjecture, Topology, 17 (1978), 383-396 | MR | Zbl
,23. An ergodic closing lemma, Ann. Math., 116 (1982), 503-540 | MR | Zbl
,24. A proof of the C1 stability conjecture, Publ. Math., Inst. Hautes Étud. Sci., 66 (1988), 161-210 | EuDML | Numdam | MR | Zbl
,25. Tolerance stability conjecture revisited, Topology Appl., 131 (2003), 33-38 | MR | Zbl
,26. Hyperbolic limit sets, Trans. Amer. Math. Soc., 167 (1972), 125-150 | MR | Zbl
,27. Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18 | MR | Zbl
,28. The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math., Inst. Hautes Étud. Sci., 50 (1979), 101-151 | EuDML | Numdam | MR | Zbl
,29. Generic homeomorphisms have the pseudo-orbit tracing property, Proc. Amer. Math. Soc., 110 (1990), 281-284 | MR | Zbl
,30. On the C1 Ω-stability conjecture, Publ. Math., Inst. Hautes Étud. Sci., 66 (1988), 211-215 | EuDML | Numdam | Zbl
,31. Structural stability theorem, Proc. Amer. Math. Soc. Symp. Pure Math., 14 (1970), 223-232 | MR | Zbl
, ,32. Hyperbolicity & sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, Cambridge, 1993. | MR | Zbl
and ,33. High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. Math., 140 (1994), 207-250 | MR | Zbl
, ,34. Shadowing in dynamical systems, Lect. Notes Math., vol. 1706, Springer, Berlin, 1999. | MR | Zbl
,35. The closing lemma, Amer. J. Math., 89 (1967), 956-1009 | MR | Zbl
,36. An improved closing lemma and a general density theorem, Amer. J. Math., 89 (1967), 1010-1021 | MR | Zbl
,37. The C1-closing lemma, including hamiltonians, Ergodic Theory Dyn. Syst., 3 (1983), 261-314 | MR | Zbl
, ,38. A structural stability theorem, Ann. Math., 94 (1971), 447-493 | MR | Zbl
,39. Generic properties of conservative systems, Amer. J. Math., 92 (1970), 562-603 | MR | Zbl
,40. Cr - structural stability implies Kupka-Smale, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 443-449, Academic Press, New York, 1973. | MR | Zbl
,41. Structural stability of C1-diffeomorphisms, J. Differ. Equ., 22 (1976), 28-73 | MR | Zbl
,42. Stability theorems and hyperbolicity in dynamical systems, Rocky Mt. J. Math., 7 (1977), 425-437 | MR | Zbl
,43. Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory Dyn. Syst., 15 (1995), 735-757 | MR | Zbl
,44. Diffeomorphisms with weak shadowing, Fundam. Math., 168 (2001), 57-75 | EuDML | MR | Zbl
,45. Stability and genericity for diffeomorphisms, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 493-514, Academic Press, New York, 1973. | MR | Zbl
,46. M. Shub, Topologically transitive diffeomorphisms of T4, Lect. Notes Math., vol. 206, pp. 39-40, Springer, Berlin-New York, 1971.
47. A 3-dimensional Abraham-Smale example, Proc. Amer. Math. Soc., 34 (1972), 629-630 | MR | Zbl
,48. Stable manifolds for differential equations and diffeomorphisms, Ann. Sc. Norm. Super. Pisa, 17 (1963), 97-116 | EuDML | Numdam | MR | Zbl
,49. Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817 | MR | Zbl
,50. On Zeeman's tolerance stability conjecture, Lect. Notes Math., vol. 197, 209-219, Springer, Berlin, 1971. | Zbl
,51. Tolerance stability, Lect. Notes Math., vol. 468, 293-304, Springer, Berlin, 1975. | MR | Zbl
,52. A uniform C1 connecting lemma, Discrete Contin. Dyn. Syst., 8 (2002), 257-265 | MR | Zbl
,53. C1 connecting lemmas, Trans. Amer. Math. Soc., 352 (2000), 5213-5230 | MR | Zbl
, ,54. On the tolerance stability conjecture, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 663-665, Academic Press, New York, 1973. | MR | Zbl
,55. An open set of maps for which every point is absolutely non-shadowable, Proc. Amer. Math. Soc., 128 (2000), 909-918 | MR | Zbl
, ,Cité par Sources :