Approximation des ensembles ω-limites des difféomorphismes par des orbites périodiques
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 2, pp. 173-190.
@article{ASENS_2003_4_36_2_173_0,
     author = {Arnaud, Marie-Claude},
     title = {Approximation des ensembles $\omega $-limites des diff\'eomorphismes par des orbites p\'eriodiques},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {173--190},
     publisher = {Elsevier},
     volume = {4e s{\'e}rie, 36},
     number = {2},
     year = {2003},
     doi = {10.1016/S0012-9593(03)00006-5},
     zbl = {1024.37011},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1016/S0012-9593(03)00006-5/}
}
TY  - JOUR
AU  - Arnaud, Marie-Claude
TI  - Approximation des ensembles $\omega $-limites des difféomorphismes par des orbites périodiques
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2003
SP  - 173
EP  - 190
VL  - 36
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S0012-9593(03)00006-5/
DO  - 10.1016/S0012-9593(03)00006-5
LA  - fr
ID  - ASENS_2003_4_36_2_173_0
ER  - 
%0 Journal Article
%A Arnaud, Marie-Claude
%T Approximation des ensembles $\omega $-limites des difféomorphismes par des orbites périodiques
%J Annales scientifiques de l'École Normale Supérieure
%D 2003
%P 173-190
%V 36
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S0012-9593(03)00006-5/
%R 10.1016/S0012-9593(03)00006-5
%G fr
%F ASENS_2003_4_36_2_173_0
Arnaud, Marie-Claude. Approximation des ensembles $\omega $-limites des difféomorphismes par des orbites périodiques. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 2, pp. 173-190. doi : 10.1016/S0012-9593(03)00006-5. http://www.numdam.org/articles/10.1016/S0012-9593(03)00006-5/

[1] Arnaud M.-C., Le “closing lemma” en topologie C1, Mem. Soc. Math. Fr, Nouv. Série 74 (1998). | Numdam | Zbl

[2] Arnaud M.-C., Un lemme de fermeture d'orbites : le “orbit closing lemma”, C.R.A.S., Ser. I 323 (1996) 1175-1178. | Zbl

[3] Arnaud M.-C., Création de connexions en topologie C1, Ergodic Theory Dynam. Systems 21 (2001) 1-43. | MR | Zbl

[4] Arnaud M.-C., The generic symplectic C1-diffeomorphisms of 4-dimensional symplectic manifolds are hyperbolic, partially hyperbolic or have a completely periodic point, Ergodic Theory Dynam. Systems, à paraître. | Zbl

[5] Arnaud M.-C., Création de points périodiques de tous types au voisinage des tores K.A.M, Bull. Soc. Math. France 123 (1995) 591-603. | Numdam | MR | Zbl

[6] Bonatti C., Diaz L., Pujals E., A C 1 -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, preprint. | MR

[7] Bonatti C., Diaz L., Connexions hétéroclines et généricité d'une infinité de puits et de sources, Ann. Sci. Ecole Norm. Sup. 32 (1999) 135-150. | Numdam | MR | Zbl

[8] Brin M.I., Pesin S.A., Partially hyperbolic dynamical systems, Math. USSR Izvestija 8 (1974) 177-218. | Zbl

[9] Hayashi S., Connecting invariant manifolds and the solution of the C1-stability and Ω-stability conjectures for flows, Ann. Math. 145 (1997) 81-137. | Zbl

[10] Hayashi S., Hyperbolicity, stability and the creation of homoclinic points, Documenta Mathematica, Extra Vol. ICM II (1998) 789-796. | EuDML | MR | Zbl

[11] Kuratowski C., Gabay J. (Ed.), Topologie, 1992. | MR | Zbl

[12] Mañé R., An ergodic closing lemma, Ann. Math. 116 (1982) 503-540. | MR | Zbl

[13] Morales C.A., Pacifico M.-J., Lyapunov stability of generic ω-limit sets, preprint.

[14] Newhouse S., Diffeomorphisms with infinitely many sinks, Topology 12 (1974) 9-18. | MR | Zbl

[15] Newhouse S., Quasi-elliptic points in conservative dynamical systems, Amer. J. Math. 99 (1977) 1081-1087. | MR | Zbl

[16] Pugh C., Robinson C., The C1 closing lemma, including Hamiltonians, Ergodic Theory Dynam. Systems 3 (1983) 261-314. | MR | Zbl

[17] Shub M., Stabilité globale des systèmes dynamiques, Astérisque 56 (1978). | Numdam | MR | Zbl

[18] Xia Z., Homoclinic points in symplectic and volume preserving diffeomorphisms, Comm. Math. Phys. 117 (1996) 435-449. | MR | Zbl

Cité par Sources :