In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.
@article{PMIHES_2004__100__5_0, author = {Kato, Kazuya and Saito, Takeshi}, title = {On the conductor formula of {Bloch}}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {5--151}, publisher = {Springer}, volume = {100}, year = {2004}, doi = {10.1007/s10240-004-0026-6}, mrnumber = {2102698}, zbl = {1099.14009}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-004-0026-6/} }
TY - JOUR AU - Kato, Kazuya AU - Saito, Takeshi TI - On the conductor formula of Bloch JO - Publications Mathématiques de l'IHÉS PY - 2004 SP - 5 EP - 151 VL - 100 PB - Springer UR - http://www.numdam.org/articles/10.1007/s10240-004-0026-6/ DO - 10.1007/s10240-004-0026-6 LA - en ID - PMIHES_2004__100__5_0 ER -
Kato, Kazuya; Saito, Takeshi. On the conductor formula of Bloch. Publications Mathématiques de l'IHÉS, Tome 100 (2004), pp. 5-151. doi : 10.1007/s10240-004-0026-6. http://www.numdam.org/articles/10.1007/s10240-004-0026-6/
1. Cycles on arithmetic surfaces, Compos. Math., 122 (2000), no. 1, 23-111. | MR | Zbl
,2. A. Abbes, The Whitney sum formula for localized Chern classes, to appear in J. Théor. Nombres Bordx.
3. Ramification groups of local fields with imperfect residue fields II, Doc. Math., Extra Volume Kato (2003), 3-70. | MR | Zbl
and ,4. K. Arai, Conductor formula of Bloch, in tame case (in Japanese), Master thesis at University of Tokyo, 2000.
5. Projective exterior Koszul homology and decomposition of the Tor functor, Invent. Math., 123 (1996), 123-140. | MR | Zbl
, , and ,6. Cycles on arithmetic schemes and Euler characteristics of curves, Algebraic geometry, Bowdoin, 1985, 421-450, Proc. Symp. Pure Math. 46, Part 2, Am. Math. Soc., Providence, RI (1987). | MR | Zbl
,7. constants and Arakelov Euler characteristics, Math. Res. Lett., 7 (2000), no. 4, 433-446. | Zbl
, , and , ε-8. Smoothness, semi-stability and alterations, Publ. Math., Inst. Hautes Étud. Sci., 83 (1996), 51-93. | Numdam | MR | Zbl
,9. Équations différentielles à points singuliers réguliers, Lect. Notes Math. 163, Springer, Berlin-New York (1970). | MR | Zbl
,10. P. Deligne and N. Katz, Groupes de monodromie en géométrie algébrique, (SGA 7 II), Lect. Notes Math. 340, Springer, Berlin-New York (1973). | MR | Zbl
11. Homologie nicht-additiver Funktoren, Anwendungen, Ann. Inst. Fourier, 11 (1961), 201-312. | Numdam | MR | Zbl
and ,12. K. Fujiwara and K. Kato, Logarithmic etale topology theory, preprint.
13. Intersection theory, 2nd ed. Ergeb. Math. Grenzgeb., 3. Folge. 2, Springer, Berlin (1998). | MR | Zbl
,14. Riemann-Roch algebra, Grundlehren Math. Wiss. 277, Springer, Berlin-New York (1985). | MR | Zbl
and ,15. A. Grothendieck with J. Dieudonné, Eléments de géométrie algèbrique IV, Publ. Math., Inst. Hautes Étud. Sci., 20, 24, 28, 32 (1964-1967). | Numdam | MR | Zbl
16. A. Grothendieck et. al., Théorie des topos et cohomologie étale des schemas, (SGA 4), tome 3, Lect. Notes Math. 305, Springer, Berlin-New York (1973). | MR | Zbl
17. A. Grothendieck et. al., Théorie des intersections et théorème de Riemann-Roch, (SGA 6), Lect. Notes Math. 225, Springer, Berlin-New York (1971). | MR
18. Residues and Duality, Lect. Notes Math. 20, Springer, Berlin-New York (1966). | MR | Zbl
,19. Complexe cotangent et déformations I, Lect. Notes Math. 239, Springer, Berlin-New York (1971). | MR | Zbl
,20. An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic etale cohomology, Cohomologies p-adiques et applications arithmétiques, II. Astérisque, 279 (2002), 271-322. | MR | Zbl
,21. L. Illusie, Champs toriques et log lissité, preprint (2000).
22. Critical points of an algebraic function, Invent. Math. 12 (1971), 210-224. | MR | Zbl
,23. Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (J.-I. Igusa ed.), Johns Hopkins UP, Baltimore (1989), 191-224. | MR | Zbl
,24. Class field theory, -modules, and ramification on higher dimensional schemes, preprint, unpublished version. | Zbl
,25. Toric singularities, Am. J. Math., 116 (1994), 1073-1099. | MR | Zbl
,26. Artin characters for algebraic surfaces, Am. J. Math., 110 (1988), no. 1, 49-75. | MR | Zbl
, , and ,27. A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ., 3 (1963), 89-102. | MR | Zbl
,28. Logarithmic étale cohomology, Math. Ann., 308 (1997), 365-404. | MR | Zbl
,29. Nearby cycles for log smooth families, Compos. Math., 112 (1998), 45-75. | MR | Zbl
,30. l-independence of the trace of monodromy, Math. Ann., 315 (1999), no. 2, 321-340. | MR | Zbl
,31. Elliptic curves and wild ramification, Am. J. Math. 89 (1967), 1-21. | MR | Zbl
,32. Logarithmic geometry and algebraic stacks, Ann. Sci. Éc. Norm. Supér., 36 (2003), 747-791. | Numdam | MR | Zbl
,33. Conjecture de Bloch et nombres de Milnor, Ann. Inst. Fourier, 53 (2003), 1739-1754. | Numdam | MR | Zbl
,34. Notes on the homology of commutative rings, Mimeographed Notes, MIT (1968). | Zbl
,35. On the (co-) homology of commutative rings, in Applications of Categorical Algebra (Proc. Sympos. Pure Math., XVII, New York, 1968, 65-87. Am. Math. Soc., Providence, R.I. | MR | Zbl
,36. Corps locaux, 3rd ed., Hermann, Paris (1968). | MR | Zbl
,37. Représentations linéaires des groupes finis, 3rd ed., Hermann, Paris (1978). | MR | Zbl
,38. Conductor, discriminant, and the Noether formula for arithmetic surfaces, Duke Math. J., 57 (1988), no. 1, 151-173. | MR | Zbl
,39. Self-intersection 0-cycles and coherent sheaves on arithmetic schemes, Duke Math. J., 57 (1988), no. 2, 555-578. | MR | Zbl
,40. Parity in Bloch's conductor formula in even dimension, to appear in J. Théor. Nombres Bordx. | Numdam | Zbl
,41. Weight spectral sequences and independence of ℓ, J. de l'Institut Math. de Jussieu, 2 (2003), 1-52. | Zbl
,42. An introduction to homological algebra, Cambr. Stud. Adv. Math., 38, Cambridge UP, Cambridge (1994). | MR | Zbl
,Cité par Sources :