@article{PMIHES_2004__99__1_0, author = {Bourgain, Jean and Brezis, Haim and Mironescu, Petru}, title = {$H^{1/2}$ maps with values into the circle : minimal connections, lifting, and the {Ginzburg-Landau} equation}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--115}, publisher = {Springer}, volume = {99}, year = {2004}, doi = {10.1007/s10240-004-0019-5}, zbl = {1051.49030}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-004-0019-5/} }
TY - JOUR AU - Bourgain, Jean AU - Brezis, Haim AU - Mironescu, Petru TI - $H^{1/2}$ maps with values into the circle : minimal connections, lifting, and the Ginzburg-Landau equation JO - Publications Mathématiques de l'IHÉS PY - 2004 SP - 1 EP - 115 VL - 99 PB - Springer UR - http://www.numdam.org/articles/10.1007/s10240-004-0019-5/ DO - 10.1007/s10240-004-0019-5 LA - en ID - PMIHES_2004__99__1_0 ER -
%0 Journal Article %A Bourgain, Jean %A Brezis, Haim %A Mironescu, Petru %T $H^{1/2}$ maps with values into the circle : minimal connections, lifting, and the Ginzburg-Landau equation %J Publications Mathématiques de l'IHÉS %D 2004 %P 1-115 %V 99 %I Springer %U http://www.numdam.org/articles/10.1007/s10240-004-0019-5/ %R 10.1007/s10240-004-0019-5 %G en %F PMIHES_2004__99__1_0
Bourgain, Jean; Brezis, Haim; Mironescu, Petru. $H^{1/2}$ maps with values into the circle : minimal connections, lifting, and the Ginzburg-Landau equation. Publications Mathématiques de l'IHÉS, Tome 99 (2004), pp. 1-115. doi : 10.1007/s10240-004-0019-5. http://www.numdam.org/articles/10.1007/s10240-004-0019-5/
1. Sobolev spaces, Acad. Press, 1975. | MR | Zbl
,2. Co-area, liquid crystals and minimal surfaces, in: Partial differential equations (Tianjin, 1986), Lect. Notes Math. 1306, Springer, 1988. | MR | Zbl
, , and ,3. A characterization of maps in H1(B3,S2) which can be approximated by smooth maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 7 (1990), 269-286. | Numdam | MR | Zbl
,4. Approximations in trace spaces defined between manifolds, Nonlinear Anal. Theory Methods Appl., 24 (1995), 121-130. | MR | Zbl
,5. W1,p estimate for solutions to the Ginzburg-Landau equation with boundary data in H1/2, C. R. Acad. Sci., Paris, Sér. I, Math., 333 (2001), 1069-1076. | MR | Zbl
, , , and ,6. F. Bethuel, H. Brezis, and J.-M. Coron, Relaxed energies for harmonic maps, in: H. Berestycki, J.-M. Coron, and I. Ekeland (eds.), Variational Problems, pp. 37-52, Birkhäuser, 1990. | MR | Zbl
7. Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differ. Equ., 1 (1993), 123-148. | MR | Zbl
, , and ,8. Small energy solutions to the Ginzburg-Landau equation, C. R. Acad. Sci., Paris, Sér. I, 331 (2000), 763-770. | MR | Zbl
, , and ,9. Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions, J. Funct. Anal., 186 (2001), 432-520. | MR | Zbl
, , and ,10. Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., 80 (1988), 60-75. | MR | Zbl
and ,11. On the equation div Y=f and application to control of phases, J. Am. Math. Soc., 16 (2003), 393-426. | MR | Zbl
and ,12. Lifting in Sobolev spaces, J. Anal. Math., 80 (2000), 37-86. | MR | Zbl
, , and ,13. On the structure of the Sobolev space H1/2 with values into the circle, C. R. Acad. Sci., Paris, Sér. I, 310 (2000), 119-124. | MR | Zbl
, , and ,14. Another look at Sobolev spaces, in: J. L. Menaldi, E. Rofman, and A. Sulem (eds.), Optimal Control and Partial Differential Equations, pp. 439-455, IOS Press, 2001. | Zbl
, , and ,15. Limiting embedding theorems for Ws,p when and applications, J. Anal. Math., 87 (2002), 77-101. | MR | Zbl
, , and ,16. Lifting, degree and distibutional Jacobian revisited, to appear in Commun. Pure Appl. Math. | MR | Zbl
, , and ,17. A boundary value problem related to the Ginzburg-Landau model, Commun. Math. Phys., 142 (1991), 1-23. | MR | Zbl
, , and ,18. H. Brezis, Liquid crystals and energy estimates for S2-valued maps, in: J. Ericksen and D. Kinderlehrer (eds.), Theory and Applications of Liquid Crystals, pp. 31-52, Springer, 1987. | MR
19. Harmonic maps with defects, Commun. Math. Phys., 107 (1986), 649-705. | MR | Zbl
, , and ,20. Degree and Sobolev spaces, Topol. Methods Nonlinear Anal., 13 (1999), 181-190. | MR | Zbl
, , , and ,21. Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evolution Equ., 1 (2001), 387-404. | MR | Zbl
and ,22. Degree Theory and BMO, Part I: Compact manifolds without boundaries, Sel. Math., 1 (1995), 197-263. | MR | Zbl
and ,23. Harmonic analysis of the space BV, Rev. Mat. Iberoam., 19 (2003), 235-263. | MR | Zbl
, , , and ,24. Une caractérisation des fonctions de W1,1(Bn ,S1) qui peuvent être approchées par des fonctions régulières, C. R. Acad. Sci., Paris, Sér. I, 310 (1990), 553-557. | MR | Zbl
,25. Some remarks on the density of regular mappings in Sobolev classes of SM-valued functions, Rev. Mat. Univ. Complut. Madrid, 1 (1988), 127-144. | MR | Zbl
,26. Geometric measure theory, Springer, 1969. | MR | Zbl
,27. Cartesian Currents in the Calculus of Variations, vol. II, Springer, 1998. | MR | Zbl
, , and ,28. A remark on the Jacobians, Comm. Contemp. Math., 2 (2000), 35-46. | MR | Zbl
and ,29. Stable defects of minimizers of constrained variational principles, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 5 (1988), 297-322. | Numdam | MR | Zbl
, , and ,30. Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl., 157 (1999), 37-115. | MR | Zbl
, , and ,31. Rectifiability of the distributional Jacobian for a class of functions, C. R. Acad. Sci., Paris, Sér. I, 329 (1999), 683-688. | MR | Zbl
and ,32. Functions of bounded higher variation, Indiana Univ. Math. J., 51 (2002), 645-677. | MR | Zbl
and ,33. The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differ. Equ., 14 (2002), 151-191. | MR | Zbl
and ,34. Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents, J. Eur. Math. Soc., 1 (1999), 237-311; Erratum 2 (2002), 87-91. | MR | Zbl
and ,35. On the Bourgain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195 (2002), 230-238. | Zbl
and ,36. On the distributions of the form , J. Funct. Anal., 210 (2004), 391-435; part of the results were announced in a note by the same author: On the distributions of the form , C. R. Acad. Sci., Paris Sér. I, Math., 336 (2003), 571-576. | MR | Zbl
,37. Line vortices in the U(1)-Higgs model, Control Optim. Calc. Var., 1 (1996), 77-167. | Numdam | MR | Zbl
,38. Dense subsets of H1/2(S2;S1), Ann. Global Anal. Geom., 18 (2000), 517-528. | MR | Zbl
,39. Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal., 152 (1998), 379-403. | MR | Zbl
,40. Ginzburg-Landau minimizers from R n+1 to R n and minimal connections, Indiana Univ. Math. J., 50 (2001), 1807-1844. | MR | Zbl
,41. Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., 18 (1983), 253-268. | MR | Zbl
and ,42. Lectures on geometric measure theory, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. | MR | Zbl
,43. On some infinite sums of integer valued Dirac's masses, C. R. Acad. Sci., Paris, Sér. I, 334 (2002), 371-374.
,44. Inequalities for functions of the classes , J. Soviet Math., 3 (1975), 549-564. | Zbl
,45. Interpolation theory. Function spaces. Differential operators, Johann Ambrosius Barth, Heidelberg, Leipzig, 1995. | MR | Zbl
,46. Variational convergence for functionals of Ginzburg-Landau type, to appear. | MR
, , and ,47. On an open problem for Jacobians raised by Bourgain, Brezis and Mironescu, C. R. Acad Sci., Paris, Sér. I, 337 (2003), 381-385. | MR | Zbl
, , and ,48. Approximation with vorticity bounds for the Ginzburg-Landau functional, to appear in Comm. Contemp. Math. | MR | Zbl
, , and ,49. New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Acad Sci., Paris, Sér. I, 338 (2004), 539-543. | MR | Zbl
and ,50. Normal and integral currents, Ann. Math., 72 (1960), 458-520. | MR | Zbl
and ,51. An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc., 6 (2004), 1-15. | Zbl
,52. On an inequality of Bourgain, Brezis and Mironescu, C. R. Acad Sci., Paris, Sér. I, 338 (2004), 23-26. | MR
,Cité par Sources :