Les travaux bien connus de Caffarelli, Kohn & Nirenberg [6] (1982) sur la régularité partielle des solutions faibles “convenables”
@article{SEDP_2009-2010____A8_0, author = {Craig, Walter}, title = {Sur l{\textquoteright}ensemble singulier et l{\textquoteright}ensemble de concentration d{\textquoteright}\'energie de {Navier} {\textendash} {Stokes}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:8}, pages = {1--11}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2009-2010}, language = {fr}, url = {https://numdam.org/item/SEDP_2009-2010____A8_0/} }
TY - JOUR AU - Craig, Walter TI - Sur l’ensemble singulier et l’ensemble de concentration d’énergie de Navier – Stokes JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:8 PY - 2009-2010 SP - 1 EP - 11 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://numdam.org/item/SEDP_2009-2010____A8_0/ LA - fr ID - SEDP_2009-2010____A8_0 ER -
%0 Journal Article %A Craig, Walter %T Sur l’ensemble singulier et l’ensemble de concentration d’énergie de Navier – Stokes %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:8 %D 2009-2010 %P 1-11 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U https://numdam.org/item/SEDP_2009-2010____A8_0/ %G fr %F SEDP_2009-2010____A8_0
Craig, Walter. Sur l’ensemble singulier et l’ensemble de concentration d’énergie de Navier – Stokes. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2009-2010), Exposé no. 8, 11 p. https://numdam.org/item/SEDP_2009-2010____A8_0/
[1] M. Arnold and W. Craig DCDS 28 no. 3, (2010). | MR
[2] R. Beals and C. Fefferman Spatially inhomogeneous pseudodifferential operators. I. Comm. Pure Appl. Math. 27 (1974) 1–24. | MR | Zbl
[3] A. Biryuk and W. Craig, Bounds on Kolmogorov spectrum for the Navier – Stokes equations. preprint, ArXiv #0807.4505 | MR
[4] A. Biryuk, W. Craig and S. Ibrahim, Construction of suitable weak solutions of the Navier-Stokes equations. Stochastic analysis and partial differential equations, 1–18, Contemp. Math., 429 Amer. Math. Soc., Providence, RI (2007). | MR | Zbl
[5] L. Boutet de Monvel Propagation des singularités des solutions d’équations analogues à l’équation de Schrödinger. Fourier integral operators and partial differential equations (Colloq. Int., Univ. Nice, Nice, 1974), pp. 1–14. Lecture Notes in Math., 459 Springer, Berlin (1975). | MR | Zbl
[6] L. Caffarelli, R. Kohn and L. Nirenberg Partial regularity of suitable weak solutions of the Navier – Stokes equations. Comm. Pure Appl. Math. 35 (1982) 771–831. | MR | Zbl
[7] D. Córdoba, C. Fefferman and R. de la Llave On squirt singularities in hydrodynamics. SIAM J. Math. Anal. 36 (2004) 204–213. | MR | Zbl
[8] L. Escauriaza, G. Seregin and V. Sveràk. Backward uniqueness for parabolic equations. Arch. Ration. Mech. Anal. 169 (2003) 147–157. | MR | Zbl
[9] C. Foiaş, C. Guillopé and R. Temam New a priori estimates for Navier-Stokes equations in dimension
[10] C. Foiaş and R. Temam Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations. J. Math. Pures Appl. (9) 58 (1979) 339–368. | MR | Zbl
[11] P. Gérard Microlocal defect measures. Comm. Partial Differential Eqns 16 (1991) 1761–1794. | MR | Zbl
[12] P. Gérard communication personelle (2009).
[13] A. N. Kolmogorov The local structure of turbulence in incompressible viscous flow for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR 30 (1941) 299–303.
[14] R. Lascar Propagation des singularités des solutions d’équations pseudo-différentielles quasi homogènes. Ann. Inst. Fourier (Grenoble) 27 (1977) vii-viii, 79–123. | Numdam | MR | Zbl
[15] J. Leray Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63 (1934) 193–248. | MR
[16] A. M. Obukhov On the energy distribution in the spectrum of a turbulent flow. Dokl. Akad. Nauk SSSR 32 (1941) 22–24. | MR | Zbl
[17] V. Scheffer Hausdorff measure and the Navier-Stokes equations. Comm. Math. Phys. 55 (1977) 97–112. | MR | Zbl
[18] J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal. 9 (1962) 187–195. | MR | Zbl
[19] H. Sohr and W. von Wahl On the regularity of the pressure of weak solutions of Navier – Stokes equations. Arch. Math. (Basel) 46 (1986) 428–439. | MR | Zbl
[20] M. Struwe On partial regularity results for the Navier-Stokes equations. Comm. Pure Appl. Math. 41 (1988) 437–458. | MR | Zbl
[21] L. Tartar