@article{SEDP_2005-2006____A18_0, author = {Rapha\"el, Pierre}, title = {Blow up of the critical norm for some radial $L^2$ super critical non linear {Schr\"odinger} equations}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:18}, pages = {1--15}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2005-2006}, mrnumber = {2276083}, language = {en}, url = {https://numdam.org/item/SEDP_2005-2006____A18_0/} }
TY - JOUR AU - Raphaël, Pierre TI - Blow up of the critical norm for some radial $L^2$ super critical non linear Schrödinger equations JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:18 PY - 2005-2006 SP - 1 EP - 15 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://numdam.org/item/SEDP_2005-2006____A18_0/ LA - en ID - SEDP_2005-2006____A18_0 ER -
%0 Journal Article %A Raphaël, Pierre %T Blow up of the critical norm for some radial $L^2$ super critical non linear Schrödinger equations %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:18 %D 2005-2006 %P 1-15 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U https://numdam.org/item/SEDP_2005-2006____A18_0/ %G en %F SEDP_2005-2006____A18_0
Raphaël, Pierre. Blow up of the critical norm for some radial $L^2$ super critical non linear Schrödinger equations. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2005-2006), Exposé no. 18, 15 p. https://numdam.org/item/SEDP_2005-2006____A18_0/
[1] Cazenave, Th.; Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, NYU, CIMS, AMS 2003. | MR | Zbl
[2] Cazenave, Th.; Weissler, F., Some remarks on the nonlinear Schrödinger equation in the critical case. Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987), 18–29, Lecture Notes in Math., 1394, Springer, Berlin, 1989. | MR | Zbl
[3] Escauriaza, L.; Seregin, G. A.; Svverak, V.,
[4] Ginibre, J.; Velo, G., On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), no. 1, 1–32. | MR | Zbl
[5] Glangetas, L.; Merle, F., A geometrical approach of existence of blow-up solutions in
[6] Kopell, N.; Landman, M., Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: a geometrical analysis, SIAM J. Appl. Math. 55 (1995), no. 5, 1297–1323. | MR | Zbl
[7] Kato, T.; Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891–907. | MR | Zbl
[8] Martel, Y.; Merle, F., Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation, Ann. of Math. (2) 155 (2002), no. 1, 235–280. | MR | Zbl
[9] Merle, F.; Raphaël, P., On Universality of Blow up Profile for
[10] Merle, F.; Raphaël, P., On a sharp lower bound on the blow-up rate for the
[11] Blow up of the critical norm for some radial
[12] Ogawa, T.; Tsutsumi, Y., Blow-up of
[13] Raphaël, P., Existence and stability of a solution blowing up on a sphere for a
[14] Zakharov, V.E.; Shabat, A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media, Sov. Phys. JETP 34 (1972), 62—69. | MR