@article{RSMUP_2011__125__107_0, author = {Fukuma, Yoshiaki}, title = {On quasi-polarized manifolds whose sectional genus is equal to the irregularity}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {107--118}, publisher = {Seminario Matematico of the University of Padua}, volume = {125}, year = {2011}, mrnumber = {2866122}, zbl = {1230.14055}, language = {en}, url = {https://numdam.org/item/RSMUP_2011__125__107_0/} }
TY - JOUR AU - Fukuma, Yoshiaki TI - On quasi-polarized manifolds whose sectional genus is equal to the irregularity JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2011 SP - 107 EP - 118 VL - 125 PB - Seminario Matematico of the University of Padua UR - https://numdam.org/item/RSMUP_2011__125__107_0/ LA - en ID - RSMUP_2011__125__107_0 ER -
%0 Journal Article %A Fukuma, Yoshiaki %T On quasi-polarized manifolds whose sectional genus is equal to the irregularity %J Rendiconti del Seminario Matematico della Università di Padova %D 2011 %P 107-118 %V 125 %I Seminario Matematico of the University of Padua %U https://numdam.org/item/RSMUP_2011__125__107_0/ %G en %F RSMUP_2011__125__107_0
Fukuma, Yoshiaki. On quasi-polarized manifolds whose sectional genus is equal to the irregularity. Rendiconti del Seminario Matematico della Università di Padova, Tome 125 (2011), pp. 107-118. https://numdam.org/item/RSMUP_2011__125__107_0/
[1] L’inegalite
[2] The adjunction theory of complex projective varieties, de Gruyter Expositions in Math. 16, Walter de Gruyter, Berlin, NewYork (1995). | MR | Zbl
- ,[3] Effective bounds for very ample line bundles, Invent. Math., 124 (1996), pp. 243-261. | MR | Zbl
,[4] Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Composit. Math., 76 (1990), pp. 69-85. | Numdam | MR | Zbl
- ,
[5] On the structure of polarized varieties with
[6] Remarks on quasi-polarized varieties, Nagoya Math. J., 115 (1989), pp. 105-123. | MR | Zbl
,[7] Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Ser., 155, Cambridge University Press (1990). | MR | Zbl
,
[8] On polarized surfaces
[9] A lower bound for the sectional genus of quasi-polarized surfaces, Geom. Dedicata, 64 (1997), pp. 229-251. | MR | Zbl
,[10] A lower bound for sectional genus of quasi-polarized manifolds, J. Math. Soc. Japan, 49 (1997), pp. 339-362. | MR | Zbl
,[11] On the nonemptiness of the linear system of polarized manifolds, Canad. Math. Bull., 41 (1998), pp. 267-278. | MR | Zbl
,
[12] On sectional genus of quasi-polarized
[13] On the sectional geometric genus of quasi-polarized varieties, II, Manuscripta Math., 113 (2004), pp. 211-237. | MR | Zbl
,[14] A lower bound for sectional genus of quasi-polarized manifolds, II, preprint, http://www.math.kochi-u.ac.jp/fukuma/preprint.html | MR | Zbl
,[15] On a conjecture of Beltrametti and Sommese, arXiv:0912.1295, to appear in J. Algebraic Geom. | Zbl
,[16] The sectional genus of quasi-polarised varieties, Arch. Math., 95 (2010), pp. 125-133. | MR | Zbl
,[17] On the adjunction theoretic structure of projective varieties, Complex analysis and algebraic geometry (Göttingen, 1985), pp. 175-213, Lecture Notes in Math., 1194 (Springer, Berlin, 1986). | MR | Zbl
,