Assessing the number of clusters of a statistical population is one of the essential issues of unsupervised learning. Given
Mots-clés : cluster analysis, connected component, level set, graph, tubular neighborhood
@article{PS_2007__11__272_0, author = {Biau, G\'erard and Cadre, Beno{\^\i}t and Pelletier, Bruno}, title = {A graph-based estimator of the number of clusters}, journal = {ESAIM: Probability and Statistics}, pages = {272--280}, publisher = {EDP-Sciences}, volume = {11}, year = {2007}, doi = {10.1051/ps:2007019}, mrnumber = {2320821}, zbl = {1187.62114}, language = {en}, url = {https://numdam.org/articles/10.1051/ps:2007019/} }
TY - JOUR AU - Biau, Gérard AU - Cadre, Benoît AU - Pelletier, Bruno TI - A graph-based estimator of the number of clusters JO - ESAIM: Probability and Statistics PY - 2007 SP - 272 EP - 280 VL - 11 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/ps:2007019/ DO - 10.1051/ps:2007019 LA - en ID - PS_2007__11__272_0 ER -
%0 Journal Article %A Biau, Gérard %A Cadre, Benoît %A Pelletier, Bruno %T A graph-based estimator of the number of clusters %J ESAIM: Probability and Statistics %D 2007 %P 272-280 %V 11 %I EDP-Sciences %U https://numdam.org/articles/10.1051/ps:2007019/ %R 10.1051/ps:2007019 %G en %F PS_2007__11__272_0
Biau, Gérard; Cadre, Benoît; Pelletier, Bruno. A graph-based estimator of the number of clusters. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 272-280. doi : 10.1051/ps:2007019. https://numdam.org/articles/10.1051/ps:2007019/
[1] Topology and Geometry, Springer-Verlag, New York, Graduate Texts in Mathematics 139 (1993). | MR | Zbl
,
[2] Connectivity of the mutual
[3] Kernel estimation of density level sets. J. Multivariate Anal. 97 (2006) 999-1023. | Zbl
,[4] Riemannian Geometry: A Modern Introduction. Cambridge University Press, Cambridge (1993). | MR | Zbl
,[5] Introduction to Algorithms. The MIT Press, Cambridge (1990). | MR | Zbl
, and ,[6] Estimating the number of clusters. Canad. J. Statist. 28 (2000) 367-382. | Zbl
, and ,[7] Cluster analysis: a further approach based on density estimation. Comput. Statist. Data Anal. 36 (2001) 441-459. | Zbl
, and ,[8] Detection of abnormal behavior via nonparametric estimation of the support. SIAM J. Appl. Math. 38 (1980) 480-488. | Zbl
and ,[9] Pattern Classification, 2nd edition. Wiley-Interscience, New York (2000). | MR | Zbl
, and ,[10] A Distribution-Free Theory of Nonparametric Regression. Springer-Verlag, New York (2002). | MR | Zbl
, , and ,[11] Clustering Algorithms. John Wiley, New York (1975). | MR | Zbl
,[12] The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2001). | MR | Zbl
, and ,[13] Foundations of Differential Geometry, Vol. I & II, 2nd edition. Wiley, New York (1996). | MR | Zbl
and ,[14] Towards a statistical theory of clustering. PASCAL Workshop on Statistics and Optimization of Clustering (2005).
and ,[15] A strong law for the longest edge of the minimal spanning tree. Ann. Probab. 27 (1999) 246-260. | Zbl
,[16] Measuring mass concentrations and estimating density contour clusters-an excess mass approach. Ann. Statist. 23 (1995) 855-881. | Zbl
,[17] Nonparametric Functional Estimation. Academic Press, Orlando (1983). | MR | Zbl
,[18] On nonparametric estimation of density level sets. Ann. Statist. 25 (1997) 948-969. | Zbl
,- Directional density-based clustering, Advances in Data Analysis and Classification (2024) | DOI:10.1007/s11634-024-00616-3
- Nonparametric estimation of directional highest density regions, Advances in Data Analysis and Classification, Volume 16 (2022) no. 3, p. 761 | DOI:10.1007/s11634-021-00457-4
- Statistical analysis of a hierarchical clustering algorithm with outliers, Journal of Multivariate Analysis, Volume 192 (2022), p. 105075 | DOI:10.1016/j.jmva.2022.105075
- Asymptotics and optimal bandwidth for nonparametric estimation of density level sets, Electronic Journal of Statistics, Volume 14 (2020) no. 1 | DOI:10.1214/19-ejs1668
- Nonparametric confidence regions for level sets: Statistical properties and geometry, Electronic Journal of Statistics, Volume 13 (2019) no. 1 | DOI:10.1214/19-ejs1543
- Dealing with Inliers in Feature Vector Data, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Volume 26 (2018) no. Suppl. 2, p. 25 | DOI:10.1142/s021848851840010x
- Gravitational Clustering: A simple, robust and adaptive approach for distributed networks, Signal Processing, Volume 149 (2018), p. 36 | DOI:10.1016/j.sigpro.2018.02.034
- Level set tree methods, WIREs Computational Statistics, Volume 10 (2018) no. 5 | DOI:10.1002/wics.1436
- On estimating the perimeter using the alpha-shape, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 53 (2017) no. 3 | DOI:10.1214/16-aihp747
- Estimation of level set trees using adaptive partitions, Computational Statistics, Volume 32 (2017) no. 3, p. 1139 | DOI:10.1007/s00180-016-0702-2
- On clustering procedures and nonparametric mixture estimation, Electronic Journal of Statistics, Volume 9 (2015) no. 1 | DOI:10.1214/15-ejs995
- Nonparametric estimation of regression level sets using kernel plug-in estimator, Journal of the Korean Statistical Society, Volume 42 (2013) no. 3, p. 301 | DOI:10.1016/j.jkss.2012.10.001
- The Normalized Graph Cut and Cheeger Constant: From Discrete to Continuous, Advances in Applied Probability, Volume 44 (2012) no. 4, p. 907 | DOI:10.1239/aap/1354716583
- Clustering Based on Pairwise Distances When the Data is of Mixed Dimensions, IEEE Transactions on Information Theory, Volume 57 (2011) no. 3, p. 1692 | DOI:10.1109/tit.2011.2104630
- On the limits of clustering in high dimensions via cost functions, Statistical Analysis and Data Mining: The ASA Data Science Journal, Volume 4 (2011) no. 1, p. 30 | DOI:10.1002/sam.10095
- Multiparameter Hierarchical Clustering Methods, Classification as a Tool for Research (2010), p. 63 | DOI:10.1007/978-3-642-10745-0_6
- Generalized density clustering, The Annals of Statistics, Volume 38 (2010) no. 5 | DOI:10.1214/10-aos797
- Optimal construction of k-nearest-neighbor graphs for identifying noisy clusters, Theoretical Computer Science, Volume 410 (2009) no. 19, p. 1749 | DOI:10.1016/j.tcs.2009.01.009
Cité par 18 documents. Sources : Crossref