Adaptive estimation of a quadratic functional of a density by model selection
ESAIM: Probability and Statistics, Tome 9 (2005), pp. 1-18.

We consider the problem of estimating the integral of the square of a density f from the observation of a n sample. Our method to estimate f2(x)dx is based on model selection via some penalized criterion. We prove that our estimator achieves the adaptive rates established by Efroimovich and Low on classes of smooth functions. A key point of the proof is an exponential inequality for U-statistics of order 2 due to Houdré and Reynaud.

DOI : 10.1051/ps:2005001
Classification : 62G05, 62G20, 62J02
Mots-clés : adaptive estimation, quadratic functionals, model selection, Besov bodies, efficient estimation
@article{PS_2005__9__1_0,
     author = {Laurent, B\'eatrice},
     title = {Adaptive estimation of a quadratic functional of a density by model selection},
     journal = {ESAIM: Probability and Statistics},
     pages = {1--18},
     publisher = {EDP-Sciences},
     volume = {9},
     year = {2005},
     doi = {10.1051/ps:2005001},
     mrnumber = {2148958},
     zbl = {1136.62333},
     language = {en},
     url = {https://numdam.org/articles/10.1051/ps:2005001/}
}
TY  - JOUR
AU  - Laurent, Béatrice
TI  - Adaptive estimation of a quadratic functional of a density by model selection
JO  - ESAIM: Probability and Statistics
PY  - 2005
SP  - 1
EP  - 18
VL  - 9
PB  - EDP-Sciences
UR  - https://numdam.org/articles/10.1051/ps:2005001/
DO  - 10.1051/ps:2005001
LA  - en
ID  - PS_2005__9__1_0
ER  - 
%0 Journal Article
%A Laurent, Béatrice
%T Adaptive estimation of a quadratic functional of a density by model selection
%J ESAIM: Probability and Statistics
%D 2005
%P 1-18
%V 9
%I EDP-Sciences
%U https://numdam.org/articles/10.1051/ps:2005001/
%R 10.1051/ps:2005001
%G en
%F PS_2005__9__1_0
Laurent, Béatrice. Adaptive estimation of a quadratic functional of a density by model selection. ESAIM: Probability and Statistics, Tome 9 (2005), pp. 1-18. doi : 10.1051/ps:2005001. https://numdam.org/articles/10.1051/ps:2005001/

[1] P. Bickel and Y. Ritov, Estimating integrated squared density derivatives: sharp best order of convergence estimates. Sankhya Ser. A. 50 (1989) 381-393. | Zbl

[2] L. Birgé and P. Massart, Estimation of integral functionals of a density. Ann. Statist. 23 (1995) 11-29. | Zbl

[3] L. Birgé and P. Massart, Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4 (1998) 329-375. | Zbl

[4] L. Birgé and Y. Rozenholc, How many bins should be put in a regular histogram. Technical Report Université Paris 6 et 7 (2002).

[5] J. Bretagnolle, A new large deviation inequality for U-statistics of order 2. ESAIM: PS 3 (1999) 151-162. | Numdam | Zbl

[6] D. Donoho and M. Nussbaum, Minimax quadratic estimation of a quadratic functional. J. Complexity 6 (1990) 290-323. | Zbl

[7] S. Efroïmovich and M. Low, On Bickel and Ritov's conjecture about adaptive estimation of the integral of the square of density derivatives. Ann. Statist. 24 (1996) 682-686. | Zbl

[8] S. Efroïmovich and M. Low, On optimal adaptive estimation of a quadratic functional. Ann. Statist. 24 (1996) 1106-1125. | Zbl

[9] M. Fromont and B. Laurent, Adaptive goodness-of-fit tests in a density model. Technical report. Université Paris 11 (2003). | Zbl

[10] G. Gayraud and K. Tribouley, Wavelet methods to estimate an integrated quadratic functional: Adaptivity and asymptotic law. Statist. Probab. Lett. 44 (1999) 109-122. | Zbl

[11] E. Giné, R. Latala and J. Zinn, Exponential and moment inequalities for U-statistics. High Dimensional Probability 2, Progress in Probability 47 (2000) 13-38. | Zbl

[12] W. Hardle, G. Kerkyacharian, D. Picard, A. Tsybakov, Wavelets, Approximations and statistical applications. Lect. Notes Stat. 129 (1998). | MR | Zbl

[13] C. Houdré and P. Reynaud-Bouret, Exponential inequalities for U-statistics of order two with constants, in Euroconference on Stochastic inequalities and applications. Barcelona. Birkhauser (2002). | Zbl

[14] I.A. Ibragimov, A. Nemirovski and R.Z. Hasminskii, Some problems on nonparametric estimation in Gaussian white noise. Theory Probab. Appl. 31 (1986) 391-406. | Zbl

[15] I. Johnstone, Chi-square oracle inequalities. State of the art in probability and statistics (Leiden 1999) - IMS Lecture Notes Monogr. Ser., 36. Inst. Math. Statist., Beachwood, OH (1999) 399-418.

[16] B. Laurent, Efficient estimation of integral functionals of a density. Ann. Statist. 24 (1996) 659-681. | Zbl

[17] B. Laurent, Estimation of integral functionals of a density and its derivatives. Bernoulli 3 (1997) 181-211. | Zbl

[18] B. Laurent and P. Massart, Adaptive estimation of a quadratic functional by model selection. Ann. Statist. 28 (2000) 1302-1338. | Zbl

Cité par Sources :