Diffusions with measurement errors. II. Optimal estimators
ESAIM: Probability and Statistics, Tome 5 (2001), pp. 243-260.

We consider a diffusion process X which is observed at times i/n for i=0,1,...,n, each observation being subject to a measurement error. All errors are independent and centered gaussian with known variance ρn. There is an unknown parameter to estimate within the diffusion coefficient. In this second paper we construct estimators which are asymptotically optimal when the process X is a gaussian martingale, and we conjecture that they are also optimal in the general case.

Classification : 60J60, 62F12, 62M05
Mots-clés : statistics of diffusions, measurement errors, LAN property
@article{PS_2001__5__243_0,
     author = {Gloter, Arnaud and Jacod, Jean},
     title = {Diffusions with measurement errors. {II.} {Optimal} estimators},
     journal = {ESAIM: Probability and Statistics},
     pages = {243--260},
     publisher = {EDP-Sciences},
     volume = {5},
     year = {2001},
     mrnumber = {1875673},
     zbl = {1009.60065},
     language = {en},
     url = {https://numdam.org/item/PS_2001__5__243_0/}
}
TY  - JOUR
AU  - Gloter, Arnaud
AU  - Jacod, Jean
TI  - Diffusions with measurement errors. II. Optimal estimators
JO  - ESAIM: Probability and Statistics
PY  - 2001
SP  - 243
EP  - 260
VL  - 5
PB  - EDP-Sciences
UR  - https://numdam.org/item/PS_2001__5__243_0/
LA  - en
ID  - PS_2001__5__243_0
ER  - 
%0 Journal Article
%A Gloter, Arnaud
%A Jacod, Jean
%T Diffusions with measurement errors. II. Optimal estimators
%J ESAIM: Probability and Statistics
%D 2001
%P 243-260
%V 5
%I EDP-Sciences
%U https://numdam.org/item/PS_2001__5__243_0/
%G en
%F PS_2001__5__243_0
Gloter, Arnaud; Jacod, Jean. Diffusions with measurement errors. II. Optimal estimators. ESAIM: Probability and Statistics, Tome 5 (2001), pp. 243-260. https://numdam.org/item/PS_2001__5__243_0/

[1] G. Dohnal, On estimating the diffusion coefficient. J. Appl. Probab. 24 (1987) 105-114. | MR | Zbl

[2] V. Genon-Catalot and J. Jacod, On the estimation of the diffusion coefficient for multidimensional diffusion processes. Ann. Inst. H. Poincaré Probab. Statist. 29 (1993) 119-153. | Numdam | Zbl

[3] A. Gloter and J. Jacod, Diffusion with measurement error. I. Local Asymptotic Normality (2000). | Numdam | MR | Zbl

[4] J. Jacod and A. Shiryaev, Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin (1987). | MR | Zbl

[5] J. Jacod, On continuous conditional Gaussian martingales and stable convergence in law, Séminaire Proba. XXXI. Springer-Verlag, Berlin, Lecture Notes in Math. 1655 (1997) 232-246. | Numdam | MR | Zbl

[6] M.B. Malyutov and O. Bayborodin, Fitting diffusion and trend in noise via Mercer expansion, in Proc. 7th Int. Conf. on Analytical and Stochastic Modeling Techniques. Hamburg (2000).

[7] A. Renyi, On stable sequences of events. Sankyā Ser. A 25 (1963) 293-302. | MR | Zbl