Let G be a split semisimple algebraic group over
@article{PMIHES_2006__103__1_0, author = {Fock, Vladimir and Goncharov, Alexander}, title = {Moduli spaces of local systems and higher {Teichm\"uller} theory}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--211}, publisher = {Springer}, volume = {103}, year = {2006}, doi = {10.1007/s10240-006-0039-4}, mrnumber = {2233852}, zbl = {1099.14025}, language = {en}, url = {https://numdam.org/articles/10.1007/s10240-006-0039-4/} }
TY - JOUR AU - Fock, Vladimir AU - Goncharov, Alexander TI - Moduli spaces of local systems and higher Teichmüller theory JO - Publications Mathématiques de l'IHÉS PY - 2006 SP - 1 EP - 211 VL - 103 PB - Springer UR - https://numdam.org/articles/10.1007/s10240-006-0039-4/ DO - 10.1007/s10240-006-0039-4 LA - en ID - PMIHES_2006__103__1_0 ER -
%0 Journal Article %A Fock, Vladimir %A Goncharov, Alexander %T Moduli spaces of local systems and higher Teichmüller theory %J Publications Mathématiques de l'IHÉS %D 2006 %P 1-211 %V 103 %I Springer %U https://numdam.org/articles/10.1007/s10240-006-0039-4/ %R 10.1007/s10240-006-0039-4 %G en %F PMIHES_2006__103__1_0
Fock, Vladimir; Goncharov, Alexander. Moduli spaces of local systems and higher Teichmüller theory. Publications Mathématiques de l'IHÉS, Tome 103 (2006), pp. 1-211. doi : 10.1007/s10240-006-0039-4. https://numdam.org/articles/10.1007/s10240-006-0039-4/
1. Parabolic Higgs bundles and Teichmüller spaces for punctured surfaces, Trans. Amer. Math. Soc., 349 (1997), no. 4, 1551-1560, alg-geom/9510011. | MR | Zbl
, and ,2. A. A. Beilinson and V. G. Drinfeld, Opers, math.AG/0501398.
3. Geometric and unipotent crystals, Geom. Funct. Anal., Special volume, part II (2000), 188-236. | MR | Zbl
and ,4. Tensor product multiplicities, canonical bases and totally positive algebras, Invent. Math., 143 (2001), no. 1, 77-128, math.RT/9912012. | MR | Zbl
and ,5. Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122 (1996), no. 1, 49-149. | MR | Zbl
, and ,6. Cluster algebras. III: Upper bounds and double Bruhat cells, Duke Math. J., 126 (2005), no. 1, 1-52, math.RT/0305434. | MR
, and ,7. Universal Teichmüller space, Analytic Methods in Mathematical Physics (Sympos., Indiana Univ., Bloomington, Ind., 1968), pp. 65-83, Gordon and Breach (1970). | MR | Zbl
,8. On the boundaries of Teichmüller spaces and on Kleinian groups, Ann. Math., 91 (1970), 670-600. | MR | Zbl
,9. The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), no. 1, 139-162. | MR | Zbl
,10. Lie groups and Lie algebras, Chapters 4-6, translated from the 1968 French original by A. Pressley, Elements of Mathematics (Berlin), Springer, Berlin (2002). | MR | Zbl
,11. Abelianization of the second nonabelian Galois cohomology, Duke Math. J., 72 (1993), 217-239. | MR | Zbl
,12. Central extensions of reductive groups by K2, Publ. Math., Inst. Hautes Étud. Sci., 94 (2001), 5-85. | Numdam | MR | Zbl
and ,13. Representation Theory and Complex Geometry, Birkhäuser Boston, Inc., Boston, MA (1997). | MR | Zbl
and ,14. Quantum Teichmüller spaces, Teor. Mat. Fiz., 120 (1999), no. 3, 511-528, math.QA/9908165. | MR | Zbl
and ,15. Flat G-bundles with canonical metrics, J. Differ. Geom., 28 (1988), 361-382. | MR | Zbl
,16. Équations différentielles à points singuliers réguliers, Springer Lect. Notes Math., vol. 163 (1970). | MR | Zbl
,17. Lie algebras and equations of Korteweg-de Vries type, Curr. Probl. Math., 24 (1984), 81-180, in Russian. | MR | Zbl
and ,18. Twisted harmonic maps and the self-duality equations, Proc. Lond. Math. Soc., 55 (1987), 127-131. | MR | Zbl
,19. The Arason invariant and mod 2 algebraic cycles, J. Amer. Math. Soc., 11 (1998), no. 1, 73-118. | MR | Zbl
, , and ,20. V. V. Fock, Dual Teichmüller spaces, dg-ga/9702018.
21. Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix, Transl., Ser. 2, Amer. Math. Soc., 191 (1999), 67-86, math.QA/9802054. | MR | Zbl
and ,22. V. V. Fock and A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm, math.AG/0311245.
23. Moduli spaces of convex projective structures on surfaces, to appear in Adv. Math. (2006), math.AG/0405348. | MR | Zbl
and ,24. Dual Teichmüller and lamination spaces, to appear in the Handbook on Teichmüller theory, math.AG/0510312. | MR
and ,
25. Cluster
26. V. V. Fock and A. B. Goncharov, to appear.
27. Double Bruhat cells and total positivity, J. Amer. Math. Soc., 12 (1999), no. 2, 335-380, math.RA/9912128. | MR | Zbl
and ,28. Cluster algebras, I, J. Amer. Math. Soc., 15 (2002), no. 2, 497-529, math.RT/0104151. | MR | Zbl
and ,29. Cluster algebras, II: Finite type classification, Invent. Math., 154 (2003), no. 1, 63-121, math.RA/0208229. | MR | Zbl
and ,30. The Laurent phenomenon. Adv. Appl. Math., 28 (2002), no. 2, 119-144, math.CO/0104241. | MR | Zbl
and ,31. Combinatorial computation of characteristic classes, I, II. (Russian), Funkts. Anal. Prilozh., 9 (1975), no. 2, 12-28; no. 3, 5-26. | MR | Zbl
, and ,32. Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, revised edition of the 1941 Russian original. | Zbl
and ,33. Sur les Matrices Oscillatores, C.R. Acad. Sci. Paris, 201 (1935), AMS Chelsea Publ., Providence, RI (2002).
, ,34. Cluster algebras and Poisson geometry, Mosc. Math. J., 3 (2003), no. 3, 899-934, math.QA/0208033. | MR | Zbl
, and ,35. Cluster algebras and Weil-Petersson forms, Duke Math. J., 127 (2005), no. 2, 291-311, math.QA/0309138. | MR | Zbl
, and ,36. O. Guichard, Sur les répresentations de groupes de surface, preprint.
37. The symplectic nature of fundamental groups of surfaces, Adv. Math., 54 (1984), no. 2, 200-225. | MR | Zbl
,38. Convex real projective structures on compact surfaces, J. Differ. Geom., 31 (1990), 126-159. | MR | Zbl
,39. Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math., 114 (1995), no. 2, 197-318. | MR | Zbl
,40. Polylogarithms and motivic Galois groups, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, part 2, pp. 43-96, Amer. Math. Soc., Providence, RI (1994). | MR | Zbl
,41. Explicit Construction of Characteristic Classes, I, M. Gelfand Seminar, Adv. Soviet Math., vol. 16, part 1, pp. 169-210, Amer. Math. Soc., Providence, RI (1993). | MR | Zbl
,42. Deninger's conjecture of L-functions of elliptic curves at s=3. Algebraic geometry, 4. J. Math. Sci., 81 (1996), no. 3, 2631-2656, alg-geom/9512016. | Zbl
,43. Polylogarithms, regulators and Arakelov motivic complexes, J. Amer. Math. Soc., 18 (2005), no. 1, 1-6; math.AG/0207036. | MR | Zbl
,44. Multiple ζ-motives and moduli spaces ℳ0,n , Compos. Math., 140 (2004), no. 1, 1-14, math.AG/0204102. | Zbl
and ,45. The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., 84 (1986), no. 1, 157-176. | MR | Zbl
,46. Lie groups and Teichmüller space, Topology, 31 (1992), no. 3, 449-473. | MR | Zbl
,47. The self-duality equation on a Riemann surface, Proc. Lond. Math. Soc., 55 (1987), 59-126. | MR | Zbl
,48. Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys., 43 (1998), no. 2, 105-115. | MR | Zbl
,49. Deformation spaces, A Crash Course on Kleinian Groups (Lectures at a Special Session, Annual Winter Meeting, Amer. Math. Soc., San Francisco, Calif., 1974), Lect. Notes Math., vol. 400, pp. 48-70, Springer, Berlin (1974). | MR | Zbl
,50. Formal (non)commutative symplectic geometry, The Gelfand Mathematical Seminars 1990-1992, Birkhäuser Boston, Boston, MA (1993), 173-187. | MR | Zbl
,51. Anosov flows, surface groups and curves in projective spaces, preprint, Dec. 8 (2003). | MR | Zbl
,52. Total positivity in reductive groups, Lie Theory and Geometry, Progr. Math., vol. 123, pp. 531-568, Birkhäuser Boston, Boston, MA (1994). | MR | Zbl
,53. Total positivity and canonical bases, Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., vol. 9, pp. 281-295, Cambridge Univ. Press, Cambridge (1997). | MR | Zbl
,54. Iteration on Teichmüller space, Invent. Math., 99 (1990), no. 2, 425-454. | MR | Zbl
,55. Introduction to algebraic K-theory, Annals of Mathematics Studies, no. 72. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo (1971). | MR | Zbl
,56. Flows on 2-dimensional manifolds, Springer Lect. Notes Math., vol. 1705 (1999). | MR | Zbl
and ,57. The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys., 113 (1987), no. 2, 299-339. | MR | Zbl
,58. Weil-Petersson volumes, J. Differ. Geom., 35 (1992), no. 3, 559-608. | MR | Zbl
,59. Universal constructions in Teichmüller theory, Adv. Math., 98 (1993), no. 2, 143-215. | MR | Zbl
,60. The universal Ptolemy group and its completions, Geometric Galois Actions, 2, 293-312, Lond. Math. Soc. Lect. Note Ser., 243, Cambridge Univ. Press (1997). | MR | Zbl
,61. Combinatorics of train tracks, Ann. Math. Studies, 125, Princeton University Press, Princeton, NJ (1992). | MR | Zbl
and ,62. Convex domains and linear combinations of continuous functions, Bull. Amer. Math. Soc., 39 (1933), 273-280. | MR | Zbl
,63. Über variationsvermindernde lineare Transformationen, Math. Z., 32 (1930), 321-322. | JFM | MR
,64. Constructing variations of Hodge structures using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867-918. | MR | Zbl
,65. Cohomologie Galoisienne (French), with a contribution by J.-L. Verdier, Lect. Notes Math., no. 5, 3rd edn., v+212pp., Springer, Berlin, New York (1965). | MR | Zbl
,66. Quadratic Differentials, Springer, Berlin, Heidelberg, New York (1984). | MR | Zbl
,67. Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J., 4 (2004), no. 4, 947-974, math.RT/0307082. | MR | Zbl
and ,68. Homology of GLn , characteristic classes and Milnor K-theory, Algebraic Geometry and its Applications, Tr. Mat. Inst. Steklova, 165 (1984), 188-204. | MR | Zbl
,69. W. Thurston, The geometry and topology of three-manifolds, Princeton University Notes, http://www.msri.org/publications/books/gt3m.
70. A reduction theorem for totally positive matrices, J. Anal. Math., 2 (1952), 88-92. | MR | Zbl
,71. Geometry of the Weil-Petersson completion of the Teichmüller space, Surv. Differ. Geom., Suppl. J. Differ. Geom., VIII (2002), 357-393. | MR | Zbl
,Cité par Sources :