[Théorie des espaces de Bergman dans la boule unité de
Ces dernières années il y a eu un grand nombre de travaux sur les espaces de Bergman pondérés
There has been a great deal of work done in recent years on weighted Bergman spaces
Mots-clés : Unit ball, Bergman space, Lipschitz space, Bloch space, Arveson space, Besov space, Carleson measure, fractional derivative, integral representation, atomic decomposition, complex interpolation, coefficient multiplier
@book{MSMF_2008_2_115__1_0, author = {Zhao, Ruhan and Zhu, Kehe}, title = {Theory of {Bergman} {Spaces} in the {Unit} {Ball} of ${\mathbb{C}}^n$}, series = {M\'emoires de la Soci\'et\'e Math\'ematique de France}, publisher = {Soci\'et\'e math\'ematique de France}, number = {115}, year = {2008}, doi = {10.24033/msmf.427}, mrnumber = {2537698}, zbl = {1176.32001}, language = {en}, url = {https://numdam.org/item/MSMF_2008_2_115__1_0/} }
TY - BOOK AU - Zhao, Ruhan AU - Zhu, Kehe TI - Theory of Bergman Spaces in the Unit Ball of ${\mathbb{C}}^n$ T3 - Mémoires de la Société Mathématique de France PY - 2008 IS - 115 PB - Société mathématique de France UR - https://numdam.org/item/MSMF_2008_2_115__1_0/ DO - 10.24033/msmf.427 LA - en ID - MSMF_2008_2_115__1_0 ER -
Zhao, Ruhan; Zhu, Kehe. Theory of Bergman Spaces in the Unit Ball of ${\mathbb{C}}^n$. Mémoires de la Société Mathématique de France, Série 2, no. 115 (2008), 109 p. doi : 10.24033/msmf.427. http://numdam.org/item/MSMF_2008_2_115__1_0/
[1] « Besov spaces, Sobolev spaces and Cauchy integrals », Michigan Math. J. 39 (1972), p. 239–261. | MR | Zbl
& –[2] Function theory in the unit ball, Several Complex Variables II, G.M. Khenkin and A.G. Vitushkin, ed., Springer, 1994.
–[3] « On Bloch functions and normal functions », J. reine angew. Math. 270, p. 12–37. | MR | EuDML | Zbl
, & –[4] « Membership of Hankel operators on the ball in unitary ideals », J. London Math. Soc. 43 (1991), p. 485–508. | MR | Zbl
, , & –[5] « Carleson measures for analytic Besov spaces: the upper triangle case »,, J. Inequal. Pure Appl. Math., 6 (2005) no. 1, Art. 13. | MR | EuDML | Zbl
–[6] « Carleson measures for analytic Besov spaces », Rev. Mat. Iberoamericana 18 (2002), p. 443–510. | MR | EuDML | Zbl
, & –[7] —, Carleson measures and interpolating sequences for Besov spaces on complex balls, Memoirs Amer. Math. Soc., vol. 859, 2006. | Zbl
[8] « Subalgebras of
[9] « Estimates for derivatives of holomorphic functions in pseudoconvex domains », Math. Z. 191 (1986), p. 91–116. | MR | EuDML | Zbl
–[10] « Characterizations of spaces of holomorphic functions in the ball », Kodai Math. J. 8 (1985), p. 36–51. | MR | Zbl
& –[11] —, Holomorphic Sobolev spaces on the ball, Dissertationes Math., Warszawa, vol. 276, 1989.
[12] « Coefficients of Bloch and Lipschitz functions », Illinois J. Math. 25 (1981), p. 520–531. | MR | Zbl
, & –[13] Interpolation of Operators, Academic Press, New York, 1988. | MR | Zbl
& –[14] Interpolation Spaces: An Introduction, Grundlehrem, vol. 223, Springer, Berlin, 1976. | MR | Zbl
& –[15] « An interpolation problem for bounded analytic functions », Amer. J. Math. 80 (1958), p. 921–930. | MR | Zbl
–[16] —, « Interpolation by analytic functions and the corona problem », Ann. Math. 76 (1962), p. 547–559. | Zbl
[17] Analytic Hilbert Modules, Chapman Hall/CRC Press, Boca Raton, 2003. | MR
& –[18] « Projections, the weighted Bergman spaces and the Bloch space », Proc. Amer. Math. Soc. 108 (1990), p. 127–136. | MR | Zbl
–[19] « Positive Toeplitz operators between harmonic Bergman spaces », Potential Anal. 17 (2002), p. 307–335. | MR | Zbl
, & –[20] « A Carleson measure theorem for the Bergman space of the ball », J. Operator Theory 7 (1982), p. 157–165. | MR | Zbl
& –[21] « Representation theorems for holomorphic and harmonic functions », Astérisque 77 (1980), p. 11–66. | MR | Zbl | Numdam
& –[22] « Factorization theorems for Hardy spaces of several complex variables », Ann. Math. 103 (1976), p. 611–635. | MR | Zbl
, & –
[23] Theory of
[24] « Linear functionals on
[25] « Projections on spaces of holomorphic functions on balls », Indiana Univ. Math. J. 24 (1974), p. 593–602. | MR | Zbl
& –[26] « Decomposition of Besov spaces », Indiana Univ. Math. J. 34 (1985), p. 777–799. | MR | Zbl
& –[27] Bounded Analytic Functions, Academic Press, New York, 1981. | MR | Zbl
–
[28] « The radial derivative, fractional integrals and the comparative growth of means of holomorphic functions on the unit ball in
[29] « M-harmonic Besov spaces and Hankel operators on the Bergman space on ball of
[30] —, « Möbius invariant Besov spaces and Hankel operators on the Bergman spaces on the unit ball », Complex Variables 17 (1991), p. 89–104. | Zbl
[31] « A Carleson measure theorem for Bergman spaces », Proc. Amer. Math. Soc. 52 (1975), p. 237–241. | MR | Zbl
–
[32] «
[33] « Besov spaces and Bergman projections on the ball », C.R. Acad. Sci. Paris, Sér. I 335 (2002), p. 729–732. | MR | Zbl
–[34] —, « Bergman projections on Besov spaces on balls », Illinois J. Math. 49 (2005), p. 385–403. | MR | Zbl
[35] —, « Carleson measures for Besov spaces on the ball », J. Funct. Anal. 250 (2007), p. 483–520. | MR | Zbl
[36] « A class of integral operators on the unit ball of
[37] « A characterization of Bergman spaces on the unit ball of
[38] « A technique for characterizing Carleson measures on Bergman spaces », Proc. Amer. Math. Soc. 87 (1983), p. 656–660. | MR | Zbl
–[39] —, « Embedding theorems for spaces of analytic functions via Khinchine’s inequality », Michigan Math. J. 40 (1993), p. 333–358. | MR | Zbl
[40] « Bloch and Möbius invariant Besov spaces on the unit ball of
[41] « Characterizations of Bergman spaces and the Bloch space in the unit ball of
[42] « Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball », Indag. Math. 2 (1991), p. 89–98. | MR | Zbl
–[43] « New characterizations of Bergman spaces », Ann. Acad. Sci. Fen. 33 (2008), p. 87–99. | MR | EuDML | Zbl
& –[44] « Möbius invariant spaces on the unit ball », Michigan Math. J. 39 (1992), p. 509–536. | MR | Zbl
–[45] « Hörmander’s Carleson theorem for the ball », Glasg. Math. J. 26 (1985), p. 13–17. | MR | Zbl
–[46] « Decomposition theorems for Bergman spaces and their applications », in Operators and Function Theory, D. Reidel, 1985, p. 225–277. | MR
–
[47] Function Theory in the Unit Ball of
[48] « On homogeneous polynomials on a complex ball », Trans. Amer. Math. Soc. 276 (1983), p. 107–116. | MR | Zbl
& –[49] « Beurling type density theorems in the unit disk », Invent. Math. 113 (1993), p. 21–39. | MR | EuDML | Zbl
–[50] —, « Regular sets of sampling and interpolation for weighted Bergman spaces », Proc. Amer. Math. Soc. 117 (1993), p. 213–220. | MR | Zbl
[51] « Macey topologies, reproducing kernels and diagonal maps on Hardy and Bergman spaces », Duke Math. J. 43 (1976), p. 187–202. | MR | Zbl
–
[52] « Inequalities for integral means of holomorphic functions and their derivatives in the unit ball of
[53] « Weighted integrals of analytic functions », Acta Sci. Math. 66 (2000), p. 651–664. | MR | Zbl
–[54] « Multipliers of the Dirichlet space », Illinois J. Math. 24 (1980), p. 113–139. | MR | Zbl
–[55] « Interpolation of operators with change of measures », Trans. Amer. Math. Soc. 87 (1958), p. 159–172. | MR | Zbl
& –[56] « A generalization of a result of Choa on analytic functions with Hadamard gaps », J. Korean Math. Soc. 43 (2006), p. 579–591. | MR | Zbl
–
[57] Invariant Potential Theory in the Unit Ball of
[58] « The asymptotic expansion of a ratio of gamma functions », Pacific J. Math. 1 (1951), p. 133–142. | MR | Zbl
& –[59] « Radial divergence in BMOA », Proc. London Math. Soc. 68 (1994), p. 145–160. | MR | Zbl
–
[60] « A sharp estimate for
[61] « Carleson measures and multipliers for the Dirichlet space », J. Funct. Anal. 169 (1999), p. 148–163. | MR | Zbl
–[62] « Bloch and BMO functions in the unit ball », 53 (2008), p. 1009–1019, Complex Variables. | MR | Zbl
& –[63] —, « Lipschitz type characterizations of Bergman spaces », to appear in Bull. Canadian. Math. Soc. | Zbl
[64] « Exact location of
[65] On a general family of function spaces, vol. 105, Ann. Acad. Sci. Fenn. Math. Dissertationes, 1996, 56pp. | MR
–[66] « Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains », J. Operator Theory 20 (1988), p. 329–357. | MR | Zbl
–
[67] —, « Möbius invariant Hilbert spaces of holomorphic functions in the unit ball of
[68] —, « Bergman and Hardy spaces with small exponents », Pacific J. Math. 162 (1994), p. 189–199. | MR | Zbl
[69] —, « Holomorphic Besov spaces on bounded symmetric domains », Quart. J. Math. Oxford 46 (1995), p. 239–256. | MR | Zbl
[70] —, « Holomorphic Besov spaces on bounded symmetric domains II », Indiana Univ. Math. J. 44 (1995), p. 239–256. | Zbl
[71] —, Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2005.
Cité par Sources :