Approximation of maximal Cheeger sets by projection
ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 1, pp. 139-150.

This article deals with the numerical computation of the Cheeger constant and the approximation of the maximal Cheeger set of a given subset of d. This problem is motivated by landslide modelling as well as by the continuous maximal flow problem. Using the fact that the maximal Cheeger set can be approximated by solving a rather simple projection problem, we propose a numerical strategy to compute maximal Cheeger sets and Cheeger constants.

DOI : 10.1051/m2an/2008040
Classification : 49Q10, 65K10
Mots-clés : Cheeger sets, Cheeger constant, total variation minimization, projections
@article{M2AN_2009__43_1_139_0,
     author = {Carlier, Guillaume and Comte, Myriam and Peyr\'e, Gabriel},
     title = {Approximation of maximal {Cheeger} sets by projection},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {139--150},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {1},
     year = {2009},
     doi = {10.1051/m2an/2008040},
     mrnumber = {2494797},
     zbl = {1161.65046},
     language = {en},
     url = {https://numdam.org/articles/10.1051/m2an/2008040/}
}
TY  - JOUR
AU  - Carlier, Guillaume
AU  - Comte, Myriam
AU  - Peyré, Gabriel
TI  - Approximation of maximal Cheeger sets by projection
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2009
SP  - 139
EP  - 150
VL  - 43
IS  - 1
PB  - EDP-Sciences
UR  - https://numdam.org/articles/10.1051/m2an/2008040/
DO  - 10.1051/m2an/2008040
LA  - en
ID  - M2AN_2009__43_1_139_0
ER  - 
%0 Journal Article
%A Carlier, Guillaume
%A Comte, Myriam
%A Peyré, Gabriel
%T Approximation of maximal Cheeger sets by projection
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2009
%P 139-150
%V 43
%N 1
%I EDP-Sciences
%U https://numdam.org/articles/10.1051/m2an/2008040/
%R 10.1051/m2an/2008040
%G en
%F M2AN_2009__43_1_139_0
Carlier, Guillaume; Comte, Myriam; Peyré, Gabriel. Approximation of maximal Cheeger sets by projection. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 1, pp. 139-150. doi : 10.1051/m2an/2008040. https://numdam.org/articles/10.1051/m2an/2008040/

[1] F. Alter and V. Caselles, Uniqueness of the Cheeger set of a convex body. Preprint (2007) available at http://cvgmt.sns.it. | MR | Zbl

[2] F. Alter, V. Caselles and A. Chambolle, Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow. Interfaces Free Bound. 7 (2005) 29-53. | MR | Zbl

[3] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. Oxford University Press, New York (2000). | MR | Zbl

[4] B. Appleton and H. Talbot, Globally minimal surfaces by continuous maximal flows. IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006) 106-118.

[5] G. Bellettini, V. Caselles, A. Chambolle and M. Novaga, Crystalline mean curvature flow of convex sets. Arch. Ration. Mech. Anal. 179 (2006) 109-152. | MR | Zbl

[6] G. Buttazzo, G. Carlier and M. Comte, On the selection of maximal Cheeger sets. Differential Integral Equations 20 (2007) 991-1004. | MR

[7] G. Carlier and M. Comte, On a weighted total variation minimization problem. J. Funct. Anal. 250 (2007) 214-226. | MR | Zbl

[8] V. Caselles, A. Chambolle and M. Novaga, Uniqueness of the Cheeger set of a convex body. Pacific J. Math. 232 (2007) 77-90. | MR

[9] A. Chambolle, An algorithm for total variation minimization and applications, Special issue on mathematics and image analysis. J. Math. Imaging Vision 20 (2004) 89-97. | MR

[10] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization. Numer. Math. 76 (1997) 167-188. | MR | Zbl

[11] P.-L. Combettes, A block-iterative surrogate constraint splitting method for quadratic signal recovery. IEEE Trans. Signal Process. 51 (2003) 1771-1782. | MR

[12] P.-L. Combettes and J.-C. Pesquet, image restoration subject to a total variation constraint. IEEE Trans. Image Process. 13 (2004) 1213-1222.

[13] N. Cristescu, A model of stability of slopes in Slope Stability 2000, in Proceedings of Sessions of Geo-Denver 2000, D.V. Griffiths, G.A. Fenton, T.R. Martin Eds., Geotechnical special publication 101 (2000) 86-98.

[14] F. Demengel, Théorèmes d’existence pour des équations avec l’opérateur “1-Laplacien”, première valeur propre de -Δ1. C. R. Math. Acad. Sci. Paris 334 (2002) 1071-1076. | MR | Zbl

[15] F. Demengel, Some existence's results for noncoercive “1-Laplacian” operator. Asymptotic Anal. 43 (2005) 287-322. | MR | Zbl

[16] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). | MR | Zbl

[17] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1999). | MR | Zbl

[18] L.C. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (1992). | MR | Zbl

[19] R. Hassani, I.R. Ionescu and T. Lachand-Robert, Shape optimization and supremal minimization approaches in landslides modeling. Appl. Math. Opt. 52 (2005) 349-364. | MR | Zbl

[20] P. Hild, I.R. Ionescu, T. Lachand-Robert and I. Rosca, The blocking of an inhomogeneous Bingham fluid. Applications to landslides. ESAIM: M2AN 36 (2002) 1013-1026. | EuDML | Numdam | MR | Zbl

[21] I.R. Ionescu and T. Lachand-Robert, Generalized Cheeger sets related to landslides. Calc. Var. Partial Differential Equations 23 (2005) 227-249. | MR | Zbl

[22] R. Nozawa, Max-flow min-cut theorem in an anisotropic network. Osaka J. Math. 27 (1990) 805-842. | MR | Zbl

[23] L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60 (1992) 259-268. | Zbl

[24] G. Strang, Maximal flow through a domain. Math. Programming 26 (1983) 123-143. | MR | Zbl

[25] G. Strang, Maximum flows and minimum cuts in the plane. J. Global Optimization (to appear). | MR | Zbl

Cité par Sources :