An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment
ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 4, pp. 683-698.

We consider the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water. The difficulty in this system comes from the coupling terms involving some derivatives of the unknowns that make the system nonconservative, and eventually nonhyperbolic. Due to these terms, a numerical scheme obtained by performing an arbitrary scheme to each layer, and using time-splitting or other similar techniques leads to instabilities in general. Here we use entropy inequalities in order to control the stability. We introduce a stable well-balanced time-splitting scheme for the two-layer shallow water system that satisfies a fully discrete entropy inequality. In contrast with Roe type solvers, it does not need the computation of eigenvalues, which is not simple for the two-layer shallow water system. The solver has the property to keep the water heights nonnegative, and to be able to treat vanishing values.

DOI : 10.1051/m2an:2008019
Classification : 74S10, 35L60, 74G15
Mots-clés : two-layer shallow water, nonconservative system, complex eigenvalues, time-splitting, entropy inequality, well-balanced scheme, nonnegativity
@article{M2AN_2008__42_4_683_0,
     author = {Bouchut, Fran\c{c}ois and Tom\'as Morales de Luna},
     title = {An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {683--698},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {4},
     year = {2008},
     doi = {10.1051/m2an:2008019},
     mrnumber = {2437779},
     language = {en},
     url = {https://numdam.org/articles/10.1051/m2an:2008019/}
}
TY  - JOUR
AU  - Bouchut, François
AU  - Tomás Morales de Luna
TI  - An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2008
SP  - 683
EP  - 698
VL  - 42
IS  - 4
PB  - EDP-Sciences
UR  - https://numdam.org/articles/10.1051/m2an:2008019/
DO  - 10.1051/m2an:2008019
LA  - en
ID  - M2AN_2008__42_4_683_0
ER  - 
%0 Journal Article
%A Bouchut, François
%A Tomás Morales de Luna
%T An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2008
%P 683-698
%V 42
%N 4
%I EDP-Sciences
%U https://numdam.org/articles/10.1051/m2an:2008019/
%R 10.1051/m2an:2008019
%G en
%F M2AN_2008__42_4_683_0
Bouchut, François; Tomás Morales de Luna. An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 4, pp. 683-698. doi : 10.1051/m2an:2008019. https://numdam.org/articles/10.1051/m2an:2008019/

[1] R. Abgrall and S. Karni, Computations of compressible multifluids. J. Comput. Phys. 169 (2001) 594-623. | MR | Zbl

[2] R. Abgrall and S. Karni, A relaxation scheme for the two-layer shallow water system, in Proceedings of the 11th International Conference on Hyperbolic Problems (Lyon, 2006), Hyperbolic problems: theory, numerics, applications, S. Benzoni-Gavage and D. Serre Eds., Springer (2007) 135-144.

[3] E. Audusse and M.-O. Bristeau, A well-balanced positivity preserving “second-order” scheme for shallow water flows on unstructured meshes. J. Comput. Phys. 206 (2005) 311-333. | MR | Zbl

[4] E. Audusse, M.-O. Bristeau and B. Perthame, Kinetic schemes for Saint-Venant equations with source terms on unstructured grids. INRIA Report, RR-3989 (2000).

[5] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050-2065 (electronic). | MR | Zbl

[6] D.S. Bale, R.J. Leveque, S. Mitran and J.A. Rossmanith, A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24 (2002) 955-978 (electronic) | MR | Zbl

[7] M. Baudin, C. Berthon, F. Coquel, R. Masson and Q.H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law. Numer. Math. 99 (2005) 411-440. | MR

[8] C. Berthon and F. Coquel, Travelling wave solutions of a convective diffusive system with first and second order terms in nonconservation form, in Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich, 1998), Internat. Ser. Numer. Math. 129, Birkhäuser, Basel (1999) 74-54. | MR | Zbl

[9] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). | MR | Zbl

[10] F. Bouchut, S. Medvedev, G. Reznik, A. Stegner and V. Zeitlin, Nonlinear dynamics of rotating shallow water: methods and advances, Edited Series on Advances in Nonlinear Science and Complexity. Elsevier (2007).

[11] M. Castro, J. Macías and C. Parés, A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. ESAIM: M2AN 35 (2001) 107-127. | Numdam | MR | Zbl

[12] Q. Jiang and R.B. Smith, Ideal shocks in a 2-layer flow. II: Under a passive layer. Tellus 53A (2001) 146-167.

[13] J.B. Klemp, R. Rotunno and W.C. Skamarock, On the propagation of internal bores. J. Fluid Mech. 331 (1997) 81-106. | Zbl

[14] M. Li and P.F. Cummins, A note on hydraulic theory of internal bores. Dyn. Atm. Oceans 28 (1998) 1-7.

[15] C. Parés and M. Castro, On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM: M2AN 38 (2004) 821-852. | Numdam | MR | Zbl

[16] M. Pelanti, F. Bouchut, A. Mangeney and J.-P. Vilotte, Numerical modeling of two-phase gravitational granular flows with bottom topography, in Proc. of HYP06, Lyon, France (2007).

[17] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201-231. | MR | Zbl

[18] J.B. Schijf and J.C. Schonfeld, Theoretical considerations on the motion of salt and fresh water, in Proc. of the Minn. Int. Hydraulics Conv., Joint meeting IAHR and Hyd. Div. ASCE (1953) 321-333.

  • Touma, Rony; Lteif, Ralph A Central Finite Volume Surface Gradient Method for the Two-Layer Shallow Water Equations with Rigid Lid, Computational Fluid Dynamics: Novel Numerical and Computational Approaches (2025), p. 25 | DOI:10.1007/978-981-97-8152-2_2
  • Martaud, Ludovic; Berthon, Christophe How to enforce an entropy inequality of (fully) well-balanced Godunov-type schemes for the shallow water equations, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 59 (2025) no. 2, p. 955 | DOI:10.1051/m2an/2025012
  • Zhang, Jiahui; Xia, Yinhua; Xu, Yan Well-balanced path-conservative discontinuous Galerkin methods with equilibrium preserving space for two-layer shallow water equations, Journal of Computational Physics, Volume 520 (2025), p. 113473 | DOI:10.1016/j.jcp.2024.113473
  • Wang, Fan; Sheng, Wancheng; Hu, Yanbo; Zhang, Qinglong The Riemann problem for two-layer shallow water equations with bottom topography, Advances in Nonlinear Analysis, Volume 13 (2024) no. 1 | DOI:10.1515/anona-2024-0058
  • Mohamed, Kamel A modified Rusanov method for simulating two-layer shallow water flows with irregular topography, Computational and Applied Mathematics, Volume 43 (2024) no. 3 | DOI:10.1007/s40314-024-02640-7
  • Mckenna, James; Glenis, Vassilis; Kilsby, Chris A local multi-layer approach to modelling interactions between shallow water flows and obstructions, Computer Methods in Applied Mechanics and Engineering, Volume 427 (2024), p. 117003 | DOI:10.1016/j.cma.2024.117003
  • Du, Chunmei; Li, Maojun A high-order domain preserving DG method for the two-layer shallow water equations, Computers Fluids, Volume 269 (2024), p. 106140 | DOI:10.1016/j.compfluid.2023.106140
  • Dong, Jian; Qian, Xu A robust numerical scheme based on auxiliary interface variables and monotone-preserving reconstructions for two-layer shallow water equations with wet–dry fronts, Computers Fluids, Volume 272 (2024), p. 106193 | DOI:10.1016/j.compfluid.2024.106193
  • Buist, J.F.H.; Sanderse, B.; Dubinkina, S.; Oosterlee, C.W.; Henkes, R.A.W.M. Energy-stable discretization of the one-dimensional two-fluid model, International Journal of Multiphase Flow, Volume 174 (2024), p. 104756 | DOI:10.1016/j.ijmultiphaseflow.2024.104756
  • Zhang, Qinglong; Sheng, Wancheng The generalized Riemann problem scheme for a laminar two-phase flow model with two-velocities, Journal of Computational Physics, Volume 506 (2024), p. 112929 | DOI:10.1016/j.jcp.2024.112929
  • Zhang, Zhihao; Tang, Huazhong; Duan, Junming High-order accurate well-balanced energy stable finite difference schemes for multi-layer shallow water equations on fixed and adaptive moving meshes, Journal of Computational Physics, Volume 517 (2024), p. 113301 | DOI:10.1016/j.jcp.2024.113301
  • Alexandris-Galanopoulos, Andreas; Papadakis, George; Belibassakis, Kostas A semi-Lagrangian Splitting framework for the simulation of non-hydrostatic free-surface flows, Ocean Modelling, Volume 187 (2024), p. 102290 | DOI:10.1016/j.ocemod.2023.102290
  • Castro Díaz, M.J.; Fernández-Nieto, E.D.; Garres-Díaz, J.; Morales de Luna, T. Discussion on different numerical treatments on the loss of hyperbolicity for the two-layer shallow water system, Advances in Water Resources, Volume 182 (2023), p. 104587 | DOI:10.1016/j.advwatres.2023.104587
  • Del Grosso, A.; Castro Díaz, M.; Chalons, C.; Morales de Luna, T. On well-balanced implicit-explicit Lagrange-projection schemes for two-layer shallow water equations, Applied Mathematics and Computation, Volume 442 (2023), p. 127702 | DOI:10.1016/j.amc.2022.127702
  • Qian, Xu; Dong, Jian Positivity-preserving nonstaggered central difference schemes solving the two-layer open channel flows, Computers Mathematics with Applications, Volume 148 (2023), p. 162 | DOI:10.1016/j.camwa.2023.08.007
  • Cao, Yangyang; Kurganov, Alexander; Liu, Yongle; Zeitlin, Vladimir Flux globalization based well-balanced path-conservative central-upwind scheme for two-layer thermal rotating shallow water equations, Journal of Computational Physics, Volume 474 (2023), p. 111790 | DOI:10.1016/j.jcp.2022.111790
  • Akbari, Majid; Pirzadeh, Bahareh Preserving stationary discontinuities in two-layer shallow water equations with a novel well-balanced approach, Journal of Hydroinformatics, Volume 25 (2023) no. 5, p. 1979 | DOI:10.2166/hydro.2023.312
  • Berthon, Christophe; Castro Díaz, Manuel J.; Duran, Arnaud; Morales de Luna, Tomás; Saleh, Khaled Artificial Viscosity to Get Both Robustness and Discrete Entropy Inequalities, Journal of Scientific Computing, Volume 97 (2023) no. 3 | DOI:10.1007/s10915-023-02385-1
  • Mohamed, Kamel; Sahmim, Slah; Benkhaldoun, Fayssal; Abdelrahman, Mahmoud A. E. Some recent finite volume schemes for one and two layers shallow water equations with variable density, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 12, p. 12979 | DOI:10.1002/mma.9227
  • Chu, Shaoshuai; Kurganov, Alexander; Na, Mingye Fifth-order A-WENO schemes based on the path-conservative central-upwind method, Journal of Computational Physics, Volume 469 (2022), p. 111508 | DOI:10.1016/j.jcp.2022.111508
  • Cao, Yangyang; Kurganov, Alexander; Liu, Yongle; Zeitlin, Vladimir Flux Globalization Based Well-Balanced Path-Conservative Central-Upwind Scheme for Two-Layer Thermal Rotating Shallow Water Equations, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4089079
  • Audusse, Emmanuel; Boittin, Léa; Parisot, Martin Asymptotic derivation and simulations of a non-local Exner model in large viscosity regime, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55 (2021) no. 4, p. 1635 | DOI:10.1051/m2an/2021031
  • Hernandez-Duenas, Gerardo; Balbás, Jorge A central-upwind scheme for two-layer shallow-water flows with friction and entrainment along channels, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55 (2021) no. 5, p. 2185 | DOI:10.1051/m2an/2021052
  • Hernandez‐Duenas, Gerardo; Ramirez‐Santiago, Guillermo A well‐balanced positivity‐preserving central‐upwind scheme for one‐dimensional blood flow models, International Journal for Numerical Methods in Fluids, Volume 93 (2021) no. 2, p. 369 | DOI:10.1002/fld.4887
  • Liu, Xin A new well-balanced finite-volume scheme on unstructured triangular grids for two-dimensional two-layer shallow water flows with wet-dry fronts, Journal of Computational Physics, Volume 438 (2021), p. 110380 | DOI:10.1016/j.jcp.2021.110380
  • Godlewski, Edwige; Raviart, Pierre-Arnaud Source Terms, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Volume 118 (2021), p. 627 | DOI:10.1007/978-1-0716-1344-3_7
  • Murillo, J.; Martinez-Aranda, S.; Navas-Montilla, A.; García-Navarro, P. Adaptation of flux-based solvers to 2D two-layer shallow flows with variable density including numerical treatment of the loss of hyperbolicity and drying/wetting fronts, Journal of Hydroinformatics, Volume 22 (2020) no. 5, p. 972 | DOI:10.2166/hydro.2020.207
  • Lobma, Fadhil; Gunawan, P. H., 2019 7th International Conference on Information and Communication Technology (ICoICT) (2019), p. 1 | DOI:10.1109/icoict.2019.8835311
  • Castro Díaz, Manuel Jesús; Kurganov, Alexander; Morales de Luna, Tomás Path-conservative central-upwind schemes for nonconservative hyperbolic systems, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 3, p. 959 | DOI:10.1051/m2an/2018077
  • Allgeyer, Sebastien; Bristeau, Marie-Odile; Froger, David; Hamouda, Raouf; Jauzein, V.; Mangeney, Anne; Sainte-Marie, Jacques; Souillé, Fabien; Vallée, Martin Numerical approximation of the 3D hydrostatic Navier–Stokes system with free surface, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 6, p. 1981 | DOI:10.1051/m2an/2019044
  • Berthon, Christophe; Duran, Arnaud; Foucher, Françoise; Saleh, Khaled; Zabsonré, Jean De Dieu Improvement of the Hydrostatic Reconstruction Scheme to Get Fully Discrete Entropy Inequalities, Journal of Scientific Computing, Volume 80 (2019) no. 2, p. 924 | DOI:10.1007/s10915-019-00961-y
  • Lin, Jiang; Mao, Bing; Lu, Xinhua; Szekrenyes, Andras A Two‐Layer Hydrostatic‐Reconstruction Method for High‐Resolution Solving of the Two‐Layer Shallow‐Water Equations over Uneven Bed Topography, Mathematical Problems in Engineering, Volume 2019 (2019) no. 1 | DOI:10.1155/2019/5064171
  • Fyhn, Eirik Holm; Lervåg, Karl Yngve; Ervik, Åsmund; Wilhelmsen, Øivind A consistent reduction of the two-layer shallow-water equations to an accurate one-layer spreading model, Physics of Fluids, Volume 31 (2019) no. 12 | DOI:10.1063/1.5126168
  • Kurganov, Alexander Finite-volume schemes for shallow-water equations, Acta Numerica, Volume 27 (2018), p. 289 | DOI:10.1017/s0962492918000028
  • Elizarova, T. G.; Ivanov, A. V. Regularized Equations for Numerical Simulation of Flows in the Two-Layer Shallow Water Approximation, Computational Mathematics and Mathematical Physics, Volume 58 (2018) no. 5, p. 714 | DOI:10.1134/s0965542518050081
  • Diagne, Mamadou; Tang, Shu-Xia; Diagne, Ababacar; Krstic, Miroslav Control of shallow waves of two unmixed fluids by backstepping, Annual Reviews in Control, Volume 44 (2017), p. 211 | DOI:10.1016/j.arcontrol.2017.09.003
  • Demay, Charles; Hérard, Jean-Marc A compressible two-layer model for transient gas–liquid flows in pipes, Continuum Mechanics and Thermodynamics, Volume 29 (2017) no. 2, p. 385 | DOI:10.1007/s00161-016-0531-0
  • Xing, Y. Numerical Methods for the Nonlinear Shallow Water Equations, Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues, Volume 18 (2017), p. 361 | DOI:10.1016/bs.hna.2016.09.003
  • Couderc, F.; Duran, A.; Vila, J.-P. An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification, Journal of Computational Physics, Volume 343 (2017), p. 235 | DOI:10.1016/j.jcp.2017.04.018
  • Diagne, Ababacar; Tang, Shuxia; Diagne, Mamadou; Krstic, Miroslav State Feedback Stabilization of the Linearized Bilayer Saint-Venant Model, IFAC-PapersOnLine, Volume 49 (2016) no. 8, p. 130 | DOI:10.1016/j.ifacol.2016.07.431
  • Alemi Ardakani, H.; Bridges, T.J.; Turner, M.R. Adaptation of f-wave finite volume methods to the two-layer shallow-water equations in a moving vessel with a rigid-lid, Journal of Computational and Applied Mathematics, Volume 296 (2016), p. 462 | DOI:10.1016/j.cam.2015.09.026
  • Elizarova, Tatiana Gennadyevna; Ivanov, Aleksander Vladimirovich Quasi-gasdynamic algorithm for numerical solution of two-layer shallow water equations, Keldysh Institute Preprints (2016) no. 69, p. 1 | DOI:10.20948/prepr-2016-69
  • Izem, Nouh; Seaid, Mohammed; Wakrim, Mohamed A discontinuous Galerkin method for two-layer shallow water equations, Mathematics and Computers in Simulation, Volume 120 (2016), p. 12 | DOI:10.1016/j.matcom.2015.04.009
  • Parisot, Martin; Vila, Jean-Paul Centered-Potential Regularization for the Advection Upstream Splitting Method, SIAM Journal on Numerical Analysis, Volume 54 (2016) no. 5, p. 3083 | DOI:10.1137/15m1021817
  • Lu, Xinhua; Dong, Bingjiang; Mao, Bing; Zhang, Xiaofeng A robust and well-balanced numerical model for solving the two-layer shallow water equations over uneven topography, Comptes Rendus. Mécanique, Volume 343 (2015) no. 7-8, p. 429 | DOI:10.1016/j.crme.2015.05.002
  • Alemi Ardakani, H.; Bridges, T.J.; Turner, M.R. Dynamic coupling between horizontal vessel motion and two-layer shallow-water sloshing, Journal of Fluids and Structures, Volume 59 (2015), p. 432 | DOI:10.1016/j.jfluidstructs.2015.10.002
  • Lu, Xinhua; Dong, Bingjiang; Mao, Bing; Zhang, Xiaofeng Convergence Improved Lax-Friedrichs Scheme Based Numerical Schemes and Their Applications in Solving the One-Layer and Two-Layer Shallow-Water Equations, Mathematical Problems in Engineering, Volume 2015 (2015), p. 1 | DOI:10.1155/2015/379281
  • Berthon, Christophe; Foucher, Françoise; Morales, Tomás An efficient splitting technique for two-layer shallow-water model, Numerical Methods for Partial Differential Equations, Volume 31 (2015) no. 5, p. 1396 | DOI:10.1002/num.21949
  • Vides, J.; Braconnier, B.; Audit, E.; Berthon, C.; Nkonga, B. A Godunov-Type Solver for the Numerical Approximation of Gravitational Flows, Communications in Computational Physics, Volume 15 (2014) no. 1, p. 46 | DOI:10.4208/cicp.060712.210313a
  • Castro Diaz, Manuel Jesús; Cheng, Yuanzhen; Chertock, Alina; Kurganov, Alexander Solving Two-Mode Shallow Water Equations Using Finite Volume Methods, Communications in Computational Physics, Volume 16 (2014) no. 5, p. 1323 | DOI:10.4208/cicp.180513.230514a
  • Parisot, Martin; Vila, Jean-Paul Numerical scheme for multilayer shallow-water model in the low-Froude number regime, Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, p. 953 | DOI:10.1016/j.crma.2014.09.020
  • Izem, Nouh; Benkhaldoun, Fayssal; Sahmim, Slah; Seaid, Mohammed; Wakrim, Mohamed A new composite scheme for two-layer shallow water flows with shocks, Journal of Applied Mathematics and Computing, Volume 44 (2014) no. 1-2, p. 467 | DOI:10.1007/s12190-013-0703-z
  • Audusse, Emmanuel; Benkhaldoun, Fayssal; Sari, Saida; Seaid, Mohammed; Tassi, Pablo A fast finite volume solver for multi-layered shallow water flows with mass exchange, Journal of Computational Physics, Volume 272 (2014), p. 23 | DOI:10.1016/j.jcp.2014.04.026
  • Benkhaldoun, Fayssal; Sari, Saida; Seaid, Mohammed A simple multi-layer finite volume solver for density-driven shallow water flows, Mathematics and Computers in Simulation, Volume 99 (2014), p. 170 | DOI:10.1016/j.matcom.2013.04.016
  • Bourdarias, C.; Ersoy, M.; Gerbi, Stéphane Air entrainment in transient flows in closed water pipes : A two-layer approach, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 47 (2013) no. 2, p. 507 | DOI:10.1051/m2an/2012036
  • Chertock, Alina; Kurganov, Alexander; Kurganov, Alexander; Qu, Zhuolin; Wu, Tong THREE-LAYER APPROXIMATION OF TWO-LAYER SHALLOW WATER EQUATIONS, Mathematical Modelling and Analysis, Volume 18 (2013) no. 5, p. 675 | DOI:10.3846/13926292.2013.869269
  • Mandli, Kyle T. A numerical method for the two layer shallow water equations with dry states, Ocean Modelling, Volume 72 (2013), p. 80 | DOI:10.1016/j.ocemod.2013.08.001
  • Pudasaini, Shiva P. A general two‐phase debris flow model, Journal of Geophysical Research: Earth Surface, Volume 117 (2012) no. F3 | DOI:10.1029/2011jf002186
  • Castro, M. J.; Parés, Carlos; Puppo, Gabriella; Russo, Giovanni Central Schemes for Nonconservative Hyperbolic Systems, SIAM Journal on Scientific Computing, Volume 34 (2012) no. 5, p. B523 | DOI:10.1137/110828873
  • Cordier, S.; Le, M.H.; Morales de Luna, T. Bedload transport in shallow water models: Why splitting (may) fail, how hyperbolicity (can) help, Advances in Water Resources, Volume 34 (2011) no. 8, p. 980 | DOI:10.1016/j.advwatres.2011.05.002
  • Dudzinski, Michael; Lukáčová-Medviďová, Mária Well-Balanced Path-Consistent Finite Volume EG Schemes for the Two-Layer Shallow Water Equations, Computational Science and High Performance Computing IV, Volume 115 (2011), p. 121 | DOI:10.1007/978-3-642-17770-5_10
  • Spinewine, Benoit; Guinot, Vincent; Soares-Frazão, Sandra; Zech, Yves Solution properties and approximate Riemann solvers for two-layer shallow flow models, Computers Fluids, Volume 44 (2011) no. 1, p. 202 | DOI:10.1016/j.compfluid.2011.01.001
  • Audusse, Emmanuel; Benkhaldoun, Fayssal; Sainte-Marie, Jacques; Seaid, Mohammed Multilayer Saint-Venant equations over movable beds, Discrete Continuous Dynamical Systems - B, Volume 15 (2011) no. 4, p. 917 | DOI:10.3934/dcdsb.2011.15.917
  • Audusse, Emmanuel; Bristeau, Marie-Odile; Perthame, Benoît; Sainte-Marie, Jacques A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 45 (2011) no. 1, p. 169 | DOI:10.1051/m2an/2010036
  • Fernández-Nieto, E. D.; Castro Díaz, M. J.; Parés, C. On an Intermediate Field Capturing Riemann Solver Based on a Parabolic Viscosity Matrix for the Two-Layer Shallow Water System, Journal of Scientific Computing, Volume 48 (2011) no. 1-3, p. 117 | DOI:10.1007/s10915-011-9465-7
  • Castro-Díaz, M. J.; Fernández-Nieto, E. D.; González-Vida, J. M.; Parés-Madroñal, C. Numerical Treatment of the Loss of Hyperbolicity of the Two-Layer Shallow-Water System, Journal of Scientific Computing, Volume 48 (2011) no. 1-3, p. 16 | DOI:10.1007/s10915-010-9427-5
  • GULA, J.; ZEITLIN, V.; BOUCHUT, F. Instabilities of buoyancy-driven coastal currents and their nonlinear evolution in the two-layer rotating shallow water model. Part 2. Active lower layer, Journal of Fluid Mechanics, Volume 665 (2010), p. 209 | DOI:10.1017/s0022112010003903
  • Kurganov, Alexander; Petrova, Guergana Central-Upwind Schemes for Two-Layer Shallow Water Equations, SIAM Journal on Scientific Computing, Volume 31 (2009) no. 3, p. 1742 | DOI:10.1137/080719091

Cité par 68 documents. Sources : Crossref