A posteriori error analysis for parabolic variational inequalities
ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 3, pp. 485-511.

Motivated by the pricing of American options for baskets we consider a parabolic variational inequality in a bounded polyhedral domain Ωd with a continuous piecewise smooth obstacle. We formulate a fully discrete method by using piecewise linear finite elements in space and the backward Euler method in time. We define an a posteriori error estimator and show that it gives an upper bound for the error in L2(0,T;H1(Ω)). The error estimator is localized in the sense that the size of the elliptic residual is only relevant in the approximate non-contact region, and the approximability of the obstacle is only relevant in the approximate contact region. We also obtain lower bound results for the space error indicators in the non-contact region, and for the time error estimator. Numerical results for d=1,2 show that the error estimator decays with the same rate as the actual error when the space meshsize h and the time step τ tend to zero. Also, the error indicators capture the correct behavior of the errors in both the contact and the non-contact regions.

DOI : 10.1051/m2an:2007029
Classification : 58E35, 65N15, 65N30
Mots-clés : a posteriori error analysis, finite element method, variational inequality, american option pricing
@article{M2AN_2007__41_3_485_0,
     author = {Moon, Kyoung-Sook and Nochetto, Ricardo H. and Petersdorff, Tobias Von and Zhang, Chen-Song},
     title = {A posteriori error analysis for parabolic variational inequalities},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {485--511},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {3},
     year = {2007},
     doi = {10.1051/m2an:2007029},
     mrnumber = {2355709},
     language = {en},
     url = {https://numdam.org/articles/10.1051/m2an:2007029/}
}
TY  - JOUR
AU  - Moon, Kyoung-Sook
AU  - Nochetto, Ricardo H.
AU  - Petersdorff, Tobias Von
AU  - Zhang, Chen-Song
TI  - A posteriori error analysis for parabolic variational inequalities
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2007
SP  - 485
EP  - 511
VL  - 41
IS  - 3
PB  - EDP-Sciences
UR  - https://numdam.org/articles/10.1051/m2an:2007029/
DO  - 10.1051/m2an:2007029
LA  - en
ID  - M2AN_2007__41_3_485_0
ER  - 
%0 Journal Article
%A Moon, Kyoung-Sook
%A Nochetto, Ricardo H.
%A Petersdorff, Tobias Von
%A Zhang, Chen-Song
%T A posteriori error analysis for parabolic variational inequalities
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2007
%P 485-511
%V 41
%N 3
%I EDP-Sciences
%U https://numdam.org/articles/10.1051/m2an:2007029/
%R 10.1051/m2an:2007029
%G en
%F M2AN_2007__41_3_485_0
Moon, Kyoung-Sook; Nochetto, Ricardo H.; Petersdorff, Tobias Von; Zhang, Chen-Song. A posteriori error analysis for parabolic variational inequalities. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 3, pp. 485-511. doi : 10.1051/m2an:2007029. https://numdam.org/articles/10.1051/m2an:2007029/

[1] W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2003). | MR | Zbl

[2] A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2005) 1117-1138 (electronic). | Zbl

[3] F. Black and M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81 (1973) 637-659. | Zbl

[4] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert. North Holland (1973). | MR | Zbl

[5] H. Brézis and F.E. Browder, Nonlinear integral equations and systems of Hammerstein type. Adv. Math. 18 (1975) 115-147. | Zbl

[6] M. Broadie and J. Detemple, Recent advances in numerical methods for pricing derivative securities, in Numerical Methods in Finance, L.C.G. Rogers and D. Talay Eds., Cambridge University Press (1997) 43-66. | Zbl

[7] L.A. Caffarelli, The regularity of monotone maps of finite compression. Comm. Pure Appl. Math. 50 (1997) 563-591. | Zbl

[8] Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548. | Zbl

[9] C.W. Cryer, Successive overrelaxation methods for solving linear complementarity problems arising from free boundary problems, Free boundary problems I, Ist. Naz. Alta Mat. Francesco Severi (1980) 109-131. | Zbl

[10] A. Fetter, L-error estimate for an approximation of a parabolic variational inequality. Numer. Math. 50 (1987) 57-565. | Zbl

[11] F. Fierro and A. Veeser, A posteriori error estimators for regularized total variation of characteristic functions. SIAM J. Numer. Anal. 41 (2003) 2032-2055. | Zbl

[12] R. Glowinski, Numerical methods for nonlinear variational problems. Springer series in computational physics, Springer-Verlag (1984). | MR | Zbl

[13] P. Jaillet, D. Lamberton and B. Lapeyre, Variational inequalities and the pricing of American options. Acta Appl. Math. 21 (1990) 263-289. | Zbl

[14] C. Johnson, Convergence estimate for an approximation of a parabolic variational inequatlity. SIAM J. Numer. Anal. 13 (1976) 599-606. | Zbl

[15] D. Lamberton and B. Lapeyre, Introduction to stochastic calculus applied to finance. Springer (1996). | MR | Zbl

[16] R.H. Nochetto and C.-S. Zhang, Adaptive mesh refinement for evolution obstacle problems (in preparation).

[17] R.H. Nochetto, G. Savaré and C. Verdi, Error control for nonlinear evolution equations. C.R. Acad. Sci. Paris Ser. I 326 (1998) 1437-1442. | Zbl

[18] R.H. Nochetto, G. Savaré and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 525-589. | Zbl

[19] R.H. Nochetto, K.G. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2003) 163-195. | Zbl

[20] R.H. Nochetto, K.G. Siebert and A. Veeser, Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. 42 (2005) 2118-2135. | Zbl

[21] M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223-237. | Zbl

[22] A. Schmidt and K.G. Siebert, Design of adaptive finite element software: the finite element toolbox ALBERTA. Lecture Notes in Computational Science and Engineering, Springer (2005). | MR | Zbl

[23] A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39 (2001) 146-167. | Zbl

[24] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley Teubner (1996). | Zbl

[25] R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40 (2003) 195-212.

[26] T. Von Petersdorff and C. Schwab, Numerical solution of parabolic equations in high dimensions. ESAIM: M2AN 38 (2004) 93-127. | Numdam | Zbl

[27] C. Vuik, An L2-error estimate for an approximation of the solution of a parabolic variational inequality. Numer. Math. 57 (1990) 453-471. | Zbl

[28] P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford, UK (1993). | Zbl

  • Mezzan, Youness A mixed finite element method for convection–diffusion complementarity problems, Journal of Applied Mathematics and Computing (2025) | DOI:10.1007/s12190-025-02398-z
  • Khandelwal, Rohit; Porwal, Kamana Pointwise A Posteriori Error Control of Discontinuous Galerkin Methods for Unilateral Contact Problems, Computational Methods in Applied Mathematics, Volume 23 (2023) no. 1, p. 189 | DOI:10.1515/cmam-2021-0194
  • Boyana, Satyajith Bommana; Lewis, Thomas; Rapp, Aaron; Zhang, Yi Convergence analysis of a symmetric dual-wind discontinuous Galerkin method for a parabolic variational inequality, Journal of Computational and Applied Mathematics, Volume 422 (2023), p. 114922 | DOI:10.1016/j.cam.2022.114922
  • Tber, Moulay Hicham A semi-Lagrangian mixed finite element method for advection–diffusion variational inequalities, Mathematics and Computers in Simulation, Volume 204 (2023), p. 202 | DOI:10.1016/j.matcom.2022.08.006
  • Alnashri, Yahya A General Error Estimate For Parabolic Variational Inequalities, Computational Methods in Applied Mathematics, Volume 22 (2022) no. 2, p. 245 | DOI:10.1515/cmam-2021-0050
  • Adak, D.; Manzini, G.; Natarajan, S. Virtual element approximation of two-dimensional parabolic variational inequalities, Computers Mathematics with Applications, Volume 116 (2022), p. 48 | DOI:10.1016/j.camwa.2021.09.007
  • Khandelwal, Rohit; Porwal, Kamana Pointwise a Posteriori Error Analysis of a Finite Element Method for the Signorini Problem, Journal of Scientific Computing, Volume 91 (2022) no. 2 | DOI:10.1007/s10915-022-01811-0
  • Basava, Seshadri; Mang, Katrin; Walloth, Mirjam; Wick, Thomas; Wollner, Winnifried Adaptive and Pressure-Robust Discretization of Incompressible Pressure-Driven Phase-Field Fracture, Non-standard Discretisation Methods in Solid Mechanics, Volume 98 (2022), p. 191 | DOI:10.1007/978-3-030-92672-4_8
  • Walloth, Mirjam; Wollner, Winnifried A Posteriori Estimator for the Adaptive Solution of a Quasi-Static Fracture Phase-Field Model with Irreversibility Constraints, SIAM Journal on Scientific Computing, Volume 44 (2022) no. 3, p. B479 | DOI:10.1137/21m1427437
  • Majumder, Papri A convergence analysis of semi-discrete and fully-discrete nonconforming FEM for the parabolic obstacle problem, International Journal of Computer Mathematics, Volume 98 (2021) no. 10, p. 1946 | DOI:10.1080/00207160.2020.1858285
  • Gudi, Thirupathi; Majumder, Papri Crouzeix–Raviart Finite Element Approximation for the Parabolic Obstacle Problem, Computational Methods in Applied Mathematics, Volume 20 (2020) no. 2, p. 273 | DOI:10.1515/cmam-2019-0057
  • Dabaghi, Jad; Martin, Vincent; Vohralík, Martin A posteriori estimates distinguishing the error components and adaptive stopping criteria for numerical approximations of parabolic variational inequalities, Computer Methods in Applied Mechanics and Engineering, Volume 367 (2020), p. 113105 | DOI:10.1016/j.cma.2020.113105
  • Mang, K.; Walloth, M.; Wick, T.; Wollner, W. Mesh adaptivity for quasi‐static phase‐field fractures based on a residual‐type a posteriori error estimator, GAMM-Mitteilungen, Volume 43 (2020) no. 1 | DOI:10.1002/gamm.202000003
  • Walloth, Mirjam Residual-type a posteriori error estimator for a quasi-static Signorini contact problem, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 3, p. 1937 | DOI:10.1093/imanum/drz023
  • Walloth, Mirjam A reliable, efficient and localized error estimator for a discontinuous Galerkin method for the Signorini problem, Applied Numerical Mathematics, Volume 135 (2019), p. 276 | DOI:10.1016/j.apnum.2018.09.002
  • Gudi, Thirupathi; Majumder, Papri Conforming and discontinuous Galerkin FEM in space for solving parabolic obstacle problem, Computers Mathematics with Applications, Volume 78 (2019) no. 12, p. 3896 | DOI:10.1016/j.camwa.2019.06.022
  • Gudi, Thirupathi; Majumder, Papri Convergence analysis of finite element method for a parabolic obstacle problem, Journal of Computational and Applied Mathematics, Volume 357 (2019), p. 85 | DOI:10.1016/j.cam.2019.02.026
  • Walloth, Mirjam Residual‐type a posteriori estimator for a viscoelastic contact problem with velocity constraints, PAMM, Volume 18 (2018) no. 1 | DOI:10.1002/pamm.201800267
  • Walloth, Mirjam Localized and efficient estimators for obstacle problems in the context of standard residual estimators, PAMM, Volume 17 (2017) no. 1, p. 767 | DOI:10.1002/pamm.201710351
  • Barboteu, Mikael; Han, Weimin; Sofonea, Mircea Numerical solution of a contact problem with unilateral constraint and history-dependent penetration, Journal of Engineering Mathematics, Volume 97 (2016) no. 1, p. 177 | DOI:10.1007/s10665-015-9804-z
  • Banz, Lothar; Schröder, Andreas Biorthogonal basis functions inhp-adaptive FEM for elliptic obstacle problems, Computers Mathematics with Applications, Volume 70 (2015) no. 8, p. 1721 | DOI:10.1016/j.camwa.2015.07.010
  • Krause, Rolf; Veeser, Andreas; Walloth, Mirjam An efficient and reliable residual-type a posteriori error estimator for the Signorini problem, Numerische Mathematik, Volume 130 (2015) no. 1, p. 151 | DOI:10.1007/s00211-014-0655-8
  • Banz, Lothar; Stephan, Ernst P. hp-adaptive IPDG/TDG-FEM for parabolic obstacle problems, Computers Mathematics with Applications, Volume 67 (2014) no. 4, p. 712 | DOI:10.1016/j.camwa.2013.03.003
  • Hilber, Norbert; Reichmann, Oleg; Schwab, Christoph; Winter, Christoph American Options, Computational Methods for Quantitative Finance (2013), p. 65 | DOI:10.1007/978-3-642-35401-4_5
  • Wohlmuth, Barbara Variationally consistent discretization schemes and numerical algorithms for contact problems, Acta Numerica, Volume 20 (2011), p. 569 | DOI:10.1017/s0962492911000079
  • Kim, Hong-Joong; Moon, Kyoung-Sook VARIABLE TIME-STEPPING HYBRID FINITE DIFFERENCE METHODS FOR PRICING BINARY OPTIONS, Bulletin of the Korean Mathematical Society, Volume 48 (2011) no. 2, p. 413 | DOI:10.4134/bkms.2011.48.2.413
  • Banz, Lothar; Stephan, Ernst P. hp‐TDG/IPDG for Parabolic Obstacle Problems, PAMM, Volume 11 (2011) no. 1, p. 763 | DOI:10.1002/pamm.201110371
  • Nochetto, Ricardo H.; von Petersdorff, Tobias; Zhang, Chen-Song A posteriori error analysis for a class of integral equations and variational inequalities, Numerische Mathematik, Volume 116 (2010) no. 3, p. 519 | DOI:10.1007/s00211-010-0310-y
  • Baňas, Ľubomír; Nürnberg, Robert A posterioriestimates for the Cahn–Hilliard equation with obstacle free energy, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 43 (2009) no. 5, p. 1003 | DOI:10.1051/m2an/2009015

Cité par 29 documents. Sources : Crossref