Motivated by the pricing of American options for baskets we consider a parabolic variational inequality in a bounded polyhedral domain
Mots-clés : a posteriori error analysis, finite element method, variational inequality, american option pricing
@article{M2AN_2007__41_3_485_0, author = {Moon, Kyoung-Sook and Nochetto, Ricardo H. and Petersdorff, Tobias Von and Zhang, Chen-Song}, title = {A posteriori error analysis for parabolic variational inequalities}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {485--511}, publisher = {EDP-Sciences}, volume = {41}, number = {3}, year = {2007}, doi = {10.1051/m2an:2007029}, mrnumber = {2355709}, language = {en}, url = {https://numdam.org/articles/10.1051/m2an:2007029/} }
TY - JOUR AU - Moon, Kyoung-Sook AU - Nochetto, Ricardo H. AU - Petersdorff, Tobias Von AU - Zhang, Chen-Song TI - A posteriori error analysis for parabolic variational inequalities JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 485 EP - 511 VL - 41 IS - 3 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/m2an:2007029/ DO - 10.1051/m2an:2007029 LA - en ID - M2AN_2007__41_3_485_0 ER -
%0 Journal Article %A Moon, Kyoung-Sook %A Nochetto, Ricardo H. %A Petersdorff, Tobias Von %A Zhang, Chen-Song %T A posteriori error analysis for parabolic variational inequalities %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 485-511 %V 41 %N 3 %I EDP-Sciences %U https://numdam.org/articles/10.1051/m2an:2007029/ %R 10.1051/m2an:2007029 %G en %F M2AN_2007__41_3_485_0
Moon, Kyoung-Sook; Nochetto, Ricardo H.; Petersdorff, Tobias Von; Zhang, Chen-Song. A posteriori error analysis for parabolic variational inequalities. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 3, pp. 485-511. doi : 10.1051/m2an:2007029. https://numdam.org/articles/10.1051/m2an:2007029/
[1] Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2003). | MR | Zbl
and ,[2] A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2005) 1117-1138 (electronic). | Zbl
, and ,[3] The pricing of options and corporate liabilities. J. Polit. Econ. 81 (1973) 637-659. | Zbl
and ,[4] Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert. North Holland (1973). | MR | Zbl
,[5] Nonlinear integral equations and systems of Hammerstein type. Adv. Math. 18 (1975) 115-147. | Zbl
and ,[6] Recent advances in numerical methods for pricing derivative securities, in Numerical Methods in Finance, L.C.G. Rogers and D. Talay Eds., Cambridge University Press (1997) 43-66. | Zbl
and ,[7] The regularity of monotone maps of finite compression. Comm. Pure Appl. Math. 50 (1997) 563-591. | Zbl
,[8] Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548. | Zbl
and ,[9] Successive overrelaxation methods for solving linear complementarity problems arising from free boundary problems, Free boundary problems I, Ist. Naz. Alta Mat. Francesco Severi (1980) 109-131. | Zbl
,
[10]
[11] A posteriori error estimators for regularized total variation of characteristic functions. SIAM J. Numer. Anal. 41 (2003) 2032-2055. | Zbl
and ,[12] Numerical methods for nonlinear variational problems. Springer series in computational physics, Springer-Verlag (1984). | MR | Zbl
,[13] Variational inequalities and the pricing of American options. Acta Appl. Math. 21 (1990) 263-289. | Zbl
, and ,[14] Convergence estimate for an approximation of a parabolic variational inequatlity. SIAM J. Numer. Anal. 13 (1976) 599-606. | Zbl
,[15] Introduction to stochastic calculus applied to finance. Springer (1996). | MR | Zbl
and ,[16] Adaptive mesh refinement for evolution obstacle problems (in preparation).
and ,[17] Error control for nonlinear evolution equations. C.R. Acad. Sci. Paris Ser. I 326 (1998) 1437-1442. | Zbl
, and ,[18] A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 525-589. | Zbl
, and ,[19] Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2003) 163-195. | Zbl
, and ,[20] Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. 42 (2005) 2118-2135. | Zbl
, and ,[21] Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223-237. | Zbl
,[22] Design of adaptive finite element software: the finite element toolbox ALBERTA. Lecture Notes in Computational Science and Engineering, Springer (2005). | MR | Zbl
and ,[23] Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39 (2001) 146-167. | Zbl
,[24] A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley Teubner (1996). | Zbl
,[25] A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40 (2003) 195-212.
,[26] Numerical solution of parabolic equations in high dimensions. ESAIM: M2AN 38 (2004) 93-127. | Numdam | Zbl
and ,
[27] An
[28] Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford, UK (1993). | Zbl
, , and ,- A mixed finite element method for convection–diffusion complementarity problems, Journal of Applied Mathematics and Computing (2025) | DOI:10.1007/s12190-025-02398-z
- Pointwise A Posteriori Error Control of Discontinuous Galerkin Methods for Unilateral Contact Problems, Computational Methods in Applied Mathematics, Volume 23 (2023) no. 1, p. 189 | DOI:10.1515/cmam-2021-0194
- Convergence analysis of a symmetric dual-wind discontinuous Galerkin method for a parabolic variational inequality, Journal of Computational and Applied Mathematics, Volume 422 (2023), p. 114922 | DOI:10.1016/j.cam.2022.114922
- A semi-Lagrangian mixed finite element method for advection–diffusion variational inequalities, Mathematics and Computers in Simulation, Volume 204 (2023), p. 202 | DOI:10.1016/j.matcom.2022.08.006
- A General Error Estimate For Parabolic Variational Inequalities, Computational Methods in Applied Mathematics, Volume 22 (2022) no. 2, p. 245 | DOI:10.1515/cmam-2021-0050
- Virtual element approximation of two-dimensional parabolic variational inequalities, Computers Mathematics with Applications, Volume 116 (2022), p. 48 | DOI:10.1016/j.camwa.2021.09.007
- Pointwise a Posteriori Error Analysis of a Finite Element Method for the Signorini Problem, Journal of Scientific Computing, Volume 91 (2022) no. 2 | DOI:10.1007/s10915-022-01811-0
- Adaptive and Pressure-Robust Discretization of Incompressible Pressure-Driven Phase-Field Fracture, Non-standard Discretisation Methods in Solid Mechanics, Volume 98 (2022), p. 191 | DOI:10.1007/978-3-030-92672-4_8
- A Posteriori Estimator for the Adaptive Solution of a Quasi-Static Fracture Phase-Field Model with Irreversibility Constraints, SIAM Journal on Scientific Computing, Volume 44 (2022) no. 3, p. B479 | DOI:10.1137/21m1427437
- A convergence analysis of semi-discrete and fully-discrete nonconforming FEM for the parabolic obstacle problem, International Journal of Computer Mathematics, Volume 98 (2021) no. 10, p. 1946 | DOI:10.1080/00207160.2020.1858285
- Crouzeix–Raviart Finite Element Approximation for the Parabolic Obstacle Problem, Computational Methods in Applied Mathematics, Volume 20 (2020) no. 2, p. 273 | DOI:10.1515/cmam-2019-0057
- A posteriori estimates distinguishing the error components and adaptive stopping criteria for numerical approximations of parabolic variational inequalities, Computer Methods in Applied Mechanics and Engineering, Volume 367 (2020), p. 113105 | DOI:10.1016/j.cma.2020.113105
- Mesh adaptivity for quasi‐static phase‐field fractures based on a residual‐type a posteriori error estimator, GAMM-Mitteilungen, Volume 43 (2020) no. 1 | DOI:10.1002/gamm.202000003
- Residual-type a posteriori error estimator for a quasi-static Signorini contact problem, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 3, p. 1937 | DOI:10.1093/imanum/drz023
- A reliable, efficient and localized error estimator for a discontinuous Galerkin method for the Signorini problem, Applied Numerical Mathematics, Volume 135 (2019), p. 276 | DOI:10.1016/j.apnum.2018.09.002
- Conforming and discontinuous Galerkin FEM in space for solving parabolic obstacle problem, Computers Mathematics with Applications, Volume 78 (2019) no. 12, p. 3896 | DOI:10.1016/j.camwa.2019.06.022
- Convergence analysis of finite element method for a parabolic obstacle problem, Journal of Computational and Applied Mathematics, Volume 357 (2019), p. 85 | DOI:10.1016/j.cam.2019.02.026
- Residual‐type a posteriori estimator for a viscoelastic contact problem with velocity constraints, PAMM, Volume 18 (2018) no. 1 | DOI:10.1002/pamm.201800267
- Localized and efficient estimators for obstacle problems in the context of standard residual estimators, PAMM, Volume 17 (2017) no. 1, p. 767 | DOI:10.1002/pamm.201710351
- Numerical solution of a contact problem with unilateral constraint and history-dependent penetration, Journal of Engineering Mathematics, Volume 97 (2016) no. 1, p. 177 | DOI:10.1007/s10665-015-9804-z
- Biorthogonal basis functions inhp-adaptive FEM for elliptic obstacle problems, Computers Mathematics with Applications, Volume 70 (2015) no. 8, p. 1721 | DOI:10.1016/j.camwa.2015.07.010
- An efficient and reliable residual-type a posteriori error estimator for the Signorini problem, Numerische Mathematik, Volume 130 (2015) no. 1, p. 151 | DOI:10.1007/s00211-014-0655-8
- hp-adaptive IPDG/TDG-FEM for parabolic obstacle problems, Computers Mathematics with Applications, Volume 67 (2014) no. 4, p. 712 | DOI:10.1016/j.camwa.2013.03.003
- American Options, Computational Methods for Quantitative Finance (2013), p. 65 | DOI:10.1007/978-3-642-35401-4_5
- Variationally consistent discretization schemes and numerical algorithms for contact problems, Acta Numerica, Volume 20 (2011), p. 569 | DOI:10.1017/s0962492911000079
- VARIABLE TIME-STEPPING HYBRID FINITE DIFFERENCE METHODS FOR PRICING BINARY OPTIONS, Bulletin of the Korean Mathematical Society, Volume 48 (2011) no. 2, p. 413 | DOI:10.4134/bkms.2011.48.2.413
- hp‐TDG/IPDG for Parabolic Obstacle Problems, PAMM, Volume 11 (2011) no. 1, p. 763 | DOI:10.1002/pamm.201110371
- A posteriori error analysis for a class of integral equations and variational inequalities, Numerische Mathematik, Volume 116 (2010) no. 3, p. 519 | DOI:10.1007/s00211-010-0310-y
- A posterioriestimates for the Cahn–Hilliard equation with obstacle free energy, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 43 (2009) no. 5, p. 1003 | DOI:10.1051/m2an/2009015
Cité par 29 documents. Sources : Crossref