We present and analyze an interior penalty method for the numerical discretization of the indefinite time-harmonic Maxwell equations in mixed form. The method is based on the mixed discretization of the curl-curl operator developed in [Houston et al., J. Sci. Comp. 22 (2005) 325-356] and can be understood as a non-stabilized variant of the approach proposed in [Perugia et al., Comput. Methods Appl. Mech. Engrg. 191 (2002) 4675-4697]. We show the well-posedness of this approach and derive optimal a priori error estimates in the energy-norm as well as the
Mots-clés : discontinuous Galerkin methods, mixed methods, time-harmonic Maxwell's equations
@article{M2AN_2005__39_4_727_0, author = {Houston, Paul and Perugia, Ilaria and Schneebeli, Anna and Sch\"otzau, Dominik}, title = {Mixed discontinuous {Galerkin} approximation of the {Maxwell} operator : the indefinite case}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {727--753}, publisher = {EDP-Sciences}, volume = {39}, number = {4}, year = {2005}, doi = {10.1051/m2an:2005032}, mrnumber = {2165677}, zbl = {1087.65106}, language = {en}, url = {https://numdam.org/articles/10.1051/m2an:2005032/} }
TY - JOUR AU - Houston, Paul AU - Perugia, Ilaria AU - Schneebeli, Anna AU - Schötzau, Dominik TI - Mixed discontinuous Galerkin approximation of the Maxwell operator : the indefinite case JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 727 EP - 753 VL - 39 IS - 4 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/m2an:2005032/ DO - 10.1051/m2an:2005032 LA - en ID - M2AN_2005__39_4_727_0 ER -
%0 Journal Article %A Houston, Paul %A Perugia, Ilaria %A Schneebeli, Anna %A Schötzau, Dominik %T Mixed discontinuous Galerkin approximation of the Maxwell operator : the indefinite case %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 727-753 %V 39 %N 4 %I EDP-Sciences %U https://numdam.org/articles/10.1051/m2an:2005032/ %R 10.1051/m2an:2005032 %G en %F M2AN_2005__39_4_727_0
Houston, Paul; Perugia, Ilaria; Schneebeli, Anna; Schötzau, Dominik. Mixed discontinuous Galerkin approximation of the Maxwell operator : the indefinite case. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 4, pp. 727-753. doi : 10.1051/m2an:2005032. https://numdam.org/articles/10.1051/m2an:2005032/
[1] Hierarchic
[2] Vector potentials in three-dimensional non-smooth domains. Math. Models Appl. Sci. 21 (1998) 823-864. | Zbl
, , and ,[3] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749-1779. | Zbl
, , and ,[4] Edge finite elements for the approximation of Maxwell resolvent operator. ESAIM: M2AN 36 (2002) 293-305. | Numdam | Zbl
and ,[5] The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics 15, Springer-Verlag, New York (1994). | MR | Zbl
and ,[6] Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37 (2000) 1542-1570. | Zbl
, and ,[7] The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | Zbl
,
[8] Modeling of electromagnetic absorption/scattering problems using
[9] Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957-991. | Zbl
and ,[10] Finite elements in computational electromagnetism. Acta Numerica 11 (2002) 237-339. | Zbl
,
[11]
[12] Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42 (2004) 434-459. | Zbl
, and ,[13] Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation. J. Sci. Comput. 22 (2005) 325-356. | Zbl
, and ,[14] Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100 (2005) 485-518. | Zbl
, , and ,[15] A posteriori error estimation for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374-2399. | Zbl
and ,[16] Problèmes aux Limites Non-Homogènes et Applications. Dunod, Paris (1968). | Zbl
and ,[17] A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63 (1992) 243-261. | Zbl
,[18] Finite element methods for Maxwell's equations. Oxford University Press, New York (2003). | Zbl
,[19] A simple proof of convergence for an edge element discretization of Maxwell's equations, in Computational electromagnetics, C. Carstensen, S. Funken, W. Hackbusch, R. Hoppe and P. Monk, Eds., Springer-Verlag, Lect. Notes Comput. Sci. Engrg. 28 (2003) 127-141. | Zbl
,
[20] A new family of mixed finite elements in
[21] The
[22] Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4675-4697. | Zbl
, and ,[23] An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959-962. | Zbl
,
[24]
- A posteriori error estimator for mixed interior penalty discontinuous Galerkin finite element method for the H(curl)-elliptic problems, Journal of Computational and Applied Mathematics, Volume 436 (2024), p. 115407 | DOI:10.1016/j.cam.2023.115407
- Analysis of a mixed discontinuous Galerkin method for the time-harmonic Maxwell equations with minimal smoothness requirements, IMA Journal of Numerical Analysis, Volume 43 (2023) no. 4, p. 2320 | DOI:10.1093/imanum/drac044
- Bernstein–Bézier
-Conforming Finite Elements for Time-Harmonic Electromagnetic Scattering Problems, Journal of Scientific Computing, Volume 97 (2023) no. 3 | DOI:10.1007/s10915-023-02381-5 - Optimal order error estimates of a mixed discontinuous Galerkin method with BDF-2 scheme for transient Darcy flow, Waves in Random and Complex Media (2023), p. 1 | DOI:10.1080/17455030.2023.2294790
- Discontinuous Galerkin Approximations for Computing Electromagnetic Bloch Modes in Photonic Crystals, Journal of Scientific Computing, Volume 70 (2017) no. 2, p. 922 | DOI:10.1007/s10915-016-0270-1
- Computational Performance of LDG Methods Applied to Time Harmonic Maxwell Equation in Polyhedral Domains, Journal of Scientific Computing, Volume 67 (2016) no. 2, p. 453 | DOI:10.1007/s10915-015-0087-3
- A-posteriori error analysis for a staggered discontinuous Galerkin discretization of the time-harmonic Maxwell’s equations, Applied Mathematics and Computation, Volume 237 (2014), p. 613 | DOI:10.1016/j.amc.2014.03.134
- High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell’s equations, Applied Mathematics and Computation, Volume 219 (2013) no. 13, p. 7241 | DOI:10.1016/j.amc.2011.03.140
- Stabilized Galerkin methods for magnetic advection, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 47 (2013) no. 6, p. 1713 | DOI:10.1051/m2an/2013085
- Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell’s equations on Cartesian grids, Journal of Computational Physics, Volume 235 (2013), p. 14 | DOI:10.1016/j.jcp.2012.10.019
- Error Bounds for Space-Time Discretizations of a 3D Model for Shape-Memory Materials, IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, Volume 21 (2010), p. 185 | DOI:10.1007/978-90-481-9195-6_14
- Error Estimates for Space-Time Discretizations of a Rate-Independent Variational Inequality, SIAM Journal on Numerical Analysis, Volume 48 (2010) no. 5, p. 1625 | DOI:10.1137/090750238
- New block triangular preconditioner for linear systems arising from the discretized time-harmonic Maxwell equations, Computer Physics Communications, Volume 180 (2009) no. 10, p. 1853 | DOI:10.1016/j.cpc.2009.05.019
- A Mixed DG Method for Linearized Incompressible Magnetohydrodynamics, Journal of Scientific Computing, Volume 40 (2009) no. 1-3, p. 281 | DOI:10.1007/s10915-008-9265-x
- A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods, Journal of Computational Physics, Volume 227 (2008) no. 3, p. 2044 | DOI:10.1016/j.jcp.2007.10.004
- Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods, Journal of Computational and Applied Mathematics, Volume 218 (2008) no. 2, p. 435 | DOI:10.1016/j.cam.2007.05.026
- A Locally Divergence-Free Interior Penalty Method for Two-Dimensional Curl-Curl Problems, SIAM Journal on Numerical Analysis, Volume 46 (2008) no. 3, p. 1190 | DOI:10.1137/060671760
- Preconditioners for the discretized time‐harmonic Maxwell equations in mixed form, Numerical Linear Algebra with Applications, Volume 14 (2007) no. 4, p. 281 | DOI:10.1002/nla.515
- A brick-tetrahedron finite-element interface with stable hybrid explicit–implicit time-stepping for Maxwell’s equations, Journal of Computational Physics, Volume 220 (2006) no. 1, p. 383 | DOI:10.1016/j.jcp.2006.05.016
Cité par 19 documents. Sources : Crossref