Mixed discontinuous Galerkin approximation of the Maxwell operator : the indefinite case
ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 4, pp. 727-753.

We present and analyze an interior penalty method for the numerical discretization of the indefinite time-harmonic Maxwell equations in mixed form. The method is based on the mixed discretization of the curl-curl operator developed in [Houston et al., J. Sci. Comp. 22 (2005) 325-356] and can be understood as a non-stabilized variant of the approach proposed in [Perugia et al., Comput. Methods Appl. Mech. Engrg. 191 (2002) 4675-4697]. We show the well-posedness of this approach and derive optimal a priori error estimates in the energy-norm as well as the L2-norm. The theoretical results are confirmed in a series of numerical experiments.

DOI : 10.1051/m2an:2005032
Classification : 65N30
Mots-clés : discontinuous Galerkin methods, mixed methods, time-harmonic Maxwell's equations
@article{M2AN_2005__39_4_727_0,
     author = {Houston, Paul and Perugia, Ilaria and Schneebeli, Anna and Sch\"otzau, Dominik},
     title = {Mixed discontinuous {Galerkin} approximation of the {Maxwell} operator : the indefinite case},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {727--753},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {4},
     year = {2005},
     doi = {10.1051/m2an:2005032},
     mrnumber = {2165677},
     zbl = {1087.65106},
     language = {en},
     url = {https://numdam.org/articles/10.1051/m2an:2005032/}
}
TY  - JOUR
AU  - Houston, Paul
AU  - Perugia, Ilaria
AU  - Schneebeli, Anna
AU  - Schötzau, Dominik
TI  - Mixed discontinuous Galerkin approximation of the Maxwell operator : the indefinite case
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2005
SP  - 727
EP  - 753
VL  - 39
IS  - 4
PB  - EDP-Sciences
UR  - https://numdam.org/articles/10.1051/m2an:2005032/
DO  - 10.1051/m2an:2005032
LA  - en
ID  - M2AN_2005__39_4_727_0
ER  - 
%0 Journal Article
%A Houston, Paul
%A Perugia, Ilaria
%A Schneebeli, Anna
%A Schötzau, Dominik
%T Mixed discontinuous Galerkin approximation of the Maxwell operator : the indefinite case
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2005
%P 727-753
%V 39
%N 4
%I EDP-Sciences
%U https://numdam.org/articles/10.1051/m2an:2005032/
%R 10.1051/m2an:2005032
%G en
%F M2AN_2005__39_4_727_0
Houston, Paul; Perugia, Ilaria; Schneebeli, Anna; Schötzau, Dominik. Mixed discontinuous Galerkin approximation of the Maxwell operator : the indefinite case. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 4, pp. 727-753. doi : 10.1051/m2an:2005032. https://numdam.org/articles/10.1051/m2an:2005032/

[1] M. Ainsworth and J. Coyle, Hierarchic hp-edge element families for Maxwell’s equations on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Engrg. 190 (2001) 6709-6733. | Zbl

[2] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Models Appl. Sci. 21 (1998) 823-864. | Zbl

[3] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749-1779. | Zbl

[4] D. Boffi and L. Gastaldi, Edge finite elements for the approximation of Maxwell resolvent operator. ESAIM: M2AN 36 (2002) 293-305. | Numdam | Zbl

[5] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics 15, Springer-Verlag, New York (1994). | MR | Zbl

[6] Z. Chen, Q. Du and J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37 (2000) 1542-1570. | Zbl

[7] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | Zbl

[8] L. Demkowicz and L. Vardapetyan, Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152 (1998) 103-124. | Zbl

[9] P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957-991. | Zbl

[10] R. Hiptmair, Finite elements in computational electromagnetism. Acta Numerica 11 (2002) 237-339. | Zbl

[11] P. Houston, I. Perugia and D. Schötzau, hp-DGFEM for Maxwell’s equations, in Numerical Mathematics and Advanced Applications ENUMATH 2001, F. Brezzi, A. Buffa, S. Corsaro, and A. Murli, Eds., Springer-Verlag (2003) 785-794. | Zbl

[12] P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42 (2004) 434-459. | Zbl

[13] P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation. J. Sci. Comput. 22 (2005) 325-356. | Zbl

[14] P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100 (2005) 485-518. | Zbl

[15] O.A. Karakashian and F. Pascal, A posteriori error estimation for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374-2399. | Zbl

[16] J. L. Lions and E. Magenes, Problèmes aux Limites Non-Homogènes et Applications. Dunod, Paris (1968). | Zbl

[17] P. Monk, A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63 (1992) 243-261. | Zbl

[18] P. Monk, Finite element methods for Maxwell's equations. Oxford University Press, New York (2003). | Zbl

[19] P. Monk, A simple proof of convergence for an edge element discretization of Maxwell's equations, in Computational electromagnetics, C. Carstensen, S. Funken, W. Hackbusch, R. Hoppe and P. Monk, Eds., Springer-Verlag, Lect. Notes Comput. Sci. Engrg. 28 (2003) 127-141. | Zbl

[20] J.C. Nédélec, A new family of mixed finite elements in 3. Numer. Math. 50 (1986) 57-81. | Zbl

[21] I. Perugia and D. Schötzau, The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72 (2003) 1179-1214. | Zbl

[22] I. Perugia, D. Schötzau and P. Monk, Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4675-4697. | Zbl

[23] A. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959-962. | Zbl

[24] L. Vardapetyan and L. Demkowicz, hp-adaptive finite elements in electromagnetics. Comput. Methods Appl. Mech. Engrg. 169 (1999) 331-344. | Zbl

  • Tang, Ming; Xing, Xiaoqing; Zhong, Liuqiang A posteriori error estimator for mixed interior penalty discontinuous Galerkin finite element method for the H(curl)-elliptic problems, Journal of Computational and Applied Mathematics, Volume 436 (2024), p. 115407 | DOI:10.1016/j.cam.2023.115407
  • Liu, Kaifang; Gallistl, Dietmar; Schlottbom, Matthias; van der Vegt, J J W Analysis of a mixed discontinuous Galerkin method for the time-harmonic Maxwell equations with minimal smoothness requirements, IMA Journal of Numerical Analysis, Volume 43 (2023) no. 4, p. 2320 | DOI:10.1093/imanum/drac044
  • Benatia, Nawfel; El Kacimi, Abdellah; Laghrouche, Omar; Ratnani, Ahmed Bernstein–Bézier H(curl)-Conforming Finite Elements for Time-Harmonic Electromagnetic Scattering Problems, Journal of Scientific Computing, Volume 97 (2023) no. 3 | DOI:10.1007/s10915-023-02381-5
  • Shah, Sheheryar; He, Limin; Cai, Wentao; Khattak, Shahzad Optimal order error estimates of a mixed discontinuous Galerkin method with BDF-2 scheme for transient Darcy flow, Waves in Random and Complex Media (2023), p. 1 | DOI:10.1080/17455030.2023.2294790
  • Lu, Zhongjie; Cesmelioglu, A.; Van der Vegt, J. J. W.; Xu, Yan Discontinuous Galerkin Approximations for Computing Electromagnetic Bloch Modes in Photonic Crystals, Journal of Scientific Computing, Volume 70 (2017) no. 2, p. 922 | DOI:10.1007/s10915-016-0270-1
  • Alvarado, A.; Castillo, P. Computational Performance of LDG Methods Applied to Time Harmonic Maxwell Equation in Polyhedral Domains, Journal of Scientific Computing, Volume 67 (2016) no. 2, p. 453 | DOI:10.1007/s10915-015-0087-3
  • Chung, Eric T.; Yuen, Man Chun; Zhong, Liuqiang A-posteriori error analysis for a staggered discontinuous Galerkin discretization of the time-harmonic Maxwell’s equations, Applied Mathematics and Computation, Volume 237 (2014), p. 613 | DOI:10.1016/j.amc.2014.03.134
  • Bouajaji, Mohamed El; Lanteri, Stéphane High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell’s equations, Applied Mathematics and Computation, Volume 219 (2013) no. 13, p. 7241 | DOI:10.1016/j.amc.2011.03.140
  • Heumann, Holger; Hiptmair, Ralf Stabilized Galerkin methods for magnetic advection, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 47 (2013) no. 6, p. 1713 | DOI:10.1051/m2an/2013085
  • Chung, Eric T.; Ciarlet, Patrick; Yu, Tang Fei Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell’s equations on Cartesian grids, Journal of Computational Physics, Volume 235 (2013), p. 14 | DOI:10.1016/j.jcp.2012.10.019
  • Mielke, Alexander; Paoli, Laetitia; Petrov, Adrien; Stefanelli, Ulisse Error Bounds for Space-Time Discretizations of a 3D Model for Shape-Memory Materials, IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, Volume 21 (2010), p. 185 | DOI:10.1007/978-90-481-9195-6_14
  • Mielke, Alexander; Paoli, Laetitia; Petrov, Adrien; Stefanelli, Ulisse Error Estimates for Space-Time Discretizations of a Rate-Independent Variational Inequality, SIAM Journal on Numerical Analysis, Volume 48 (2010) no. 5, p. 1625 | DOI:10.1137/090750238
  • Huang, Ting-Zhu; Zhang, Li-Tao; Gu, Tong-Xiang; Zuo, Xian-Yu New block triangular preconditioner for linear systems arising from the discretized time-harmonic Maxwell equations, Computer Physics Communications, Volume 180 (2009) no. 10, p. 1853 | DOI:10.1016/j.cpc.2009.05.019
  • Houston, Paul; Schötzau, Dominik; Wei, Xiaoxi A Mixed DG Method for Linearized Incompressible Magnetohydrodynamics, Journal of Scientific Computing, Volume 40 (2009) no. 1-3, p. 281 | DOI:10.1007/s10915-008-9265-x
  • Dolean, Victorita; Lanteri, Stéphane; Perrussel, Ronan A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods, Journal of Computational Physics, Volume 227 (2008) no. 3, p. 2044 | DOI:10.1016/j.jcp.2007.10.004
  • Dolean, V.; Fol, H.; Lanteri, S.; Perrussel, R. Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods, Journal of Computational and Applied Mathematics, Volume 218 (2008) no. 2, p. 435 | DOI:10.1016/j.cam.2007.05.026
  • Brenner, Susanne C.; Li, Fengyan; Sung, Li-Yeng A Locally Divergence-Free Interior Penalty Method for Two-Dimensional Curl-Curl Problems, SIAM Journal on Numerical Analysis, Volume 46 (2008) no. 3, p. 1190 | DOI:10.1137/060671760
  • Greif, Chen; Schötzau, Dominik Preconditioners for the discretized time‐harmonic Maxwell equations in mixed form, Numerical Linear Algebra with Applications, Volume 14 (2007) no. 4, p. 281 | DOI:10.1002/nla.515
  • Degerfeldt, D.; Rylander, T. A brick-tetrahedron finite-element interface with stable hybrid explicit–implicit time-stepping for Maxwell’s equations, Journal of Computational Physics, Volume 220 (2006) no. 1, p. 383 | DOI:10.1016/j.jcp.2006.05.016

Cité par 19 documents. Sources : Crossref