Cell-to-muscle homogenization. Application to a constitutive law for the myocardium
ESAIM: Modélisation mathématique et analyse numérique, Special issue on Biological and Biomedical Applications, Tome 37 (2003) no. 4, pp. 681-698.

We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice reference cell.

DOI : 10.1051/m2an:2003054
Classification : 74L15, 74Q05, 74Q15, 92B05
Mots-clés : myocardium, constitutive law, homogenization, large deformations
@article{M2AN_2003__37_4_681_0,
     author = {Caillerie, Denis and Mourad, Ayman and Raoult, Annie},
     title = {Cell-to-muscle homogenization. {Application} to a constitutive law for the myocardium},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {681--698},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {4},
     year = {2003},
     doi = {10.1051/m2an:2003054},
     mrnumber = {2018437},
     zbl = {1070.74030},
     language = {en},
     url = {https://numdam.org/articles/10.1051/m2an:2003054/}
}
TY  - JOUR
AU  - Caillerie, Denis
AU  - Mourad, Ayman
AU  - Raoult, Annie
TI  - Cell-to-muscle homogenization. Application to a constitutive law for the myocardium
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2003
SP  - 681
EP  - 698
VL  - 37
IS  - 4
PB  - EDP-Sciences
UR  - https://numdam.org/articles/10.1051/m2an:2003054/
DO  - 10.1051/m2an:2003054
LA  - en
ID  - M2AN_2003__37_4_681_0
ER  - 
%0 Journal Article
%A Caillerie, Denis
%A Mourad, Ayman
%A Raoult, Annie
%T Cell-to-muscle homogenization. Application to a constitutive law for the myocardium
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2003
%P 681-698
%V 37
%N 4
%I EDP-Sciences
%U https://numdam.org/articles/10.1051/m2an:2003054/
%R 10.1051/m2an:2003054
%G en
%F M2AN_2003__37_4_681_0
Caillerie, Denis; Mourad, Ayman; Raoult, Annie. Cell-to-muscle homogenization. Application to a constitutive law for the myocardium. ESAIM: Modélisation mathématique et analyse numérique, Special issue on Biological and Biomedical Applications, Tome 37 (2003) no. 4, pp. 681-698. doi : 10.1051/m2an:2003054. https://numdam.org/articles/10.1051/m2an:2003054/

[1] T. Arts, R.S. Reneman and P.C. Veenstra, A model of the mechanics of the left ventricle. Ann. Biomed. Engrg. 7 (1979) 299-318.

[2] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). | MR | Zbl

[3] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer-Verlag, New York (1991). | MR | Zbl

[4] M. Briane, Three models of non periodic fibrous materials obtained by homogenization. ESAIM: M2AN 27 (1993) 759-775. | Numdam | Zbl

[5] H. Cai, Loi de comportement en grandes déformations du muscle à fibres actives. Application à la mécanique du cœur humain et à sa croissance. Thèse de l'Université de Savoie (1998).

[6] D. Caillerie and B. Cambou, Les techniques de changement d'échelles dans les milieux granulaires, in Micromécanique des milieux granulaires. Hermès Sciences, Paris (2001).

[7] R.S. Chadwick, Mechanics of the left ventricle. Biophys. J. 112 (1982) 333-339.

[8] D. Chapelle, F. Clément, F. Génot, P. Le Tallec, M. Sorine and J.M. Urquiza, A Physiologically-Based Model for the Active Cardiac Muscle Contraction, in Functional Imaging and Modeling of the Heart, Katila, Magnin, Clarysse, Montagnat and Nenonen Eds., LNCS 2230. Springer (2001) 128-133. | Zbl

[9] P.G. Ciarlet, Mathematical Elasticity. Vol. 1: Three-Dimensional Elasticity. North-Holland, Amsterdam (1987). | MR | Zbl

[10] D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, Applied Mathematical Science 136. Springer-Verlag, New York (1999). | MR | Zbl

[11] Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues. 2nd ed., Springer-Verlag, New York (1993). | Zbl

[12] M. Gurtin, An Introduction to Continuum Mechanics. Academic Press, San Diego (1981). | MR | Zbl

[13] P.S. Jouk, Y. Usson, G. Michalowicz and L. Grossi, Three-dimensional cartography of the pattern of the myofibres in the second trimester fetal human heart. Anat. Embryol. 202 (2000) 103-118.

[14] J.D. Humphrey, R.K. Strumpf and F.C.P. Yin, Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Engrg. 112 (1990) 333-339.

[15] J.D. Humphrey, R.K. Strumpf and F.C.P. Yin, Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J. Biomech. Engrg. 112 (1990) 340-346.

[16] D.H.S. Lin and F.C.P. Yin, A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Engrg. 120 (1998) 504-517.

[17] G. Moreau and D. Caillerie, Continuum modeling of lattice structures in large displacement. Applications to buckling analysis. Comput. & Structures 68 (1998) 181-189. | Zbl

[18] A. Mourad, L. Biard, D. Caillerie, P.-S. Jouk, A. Raoult, N. Szafran and Y. Usson, Geometrical modelling of the fibre organization in the human left ventricle, in Functional Imaging and Modeling of the Heart, Katila, Magnin, Clarysse, Montagnat, Nenonen Eds., LNCS 2230. Springer (2001) 32-38. | Zbl

[19] M.P. Nash and P.J. Hunter, Computational mechanics of the heart. J. Elasticity 61 (2000) 113-141. | Zbl

[20] C.S. Peskin, Fiber architecture of the left ventricular wall: An asymptotic analysis. Comm. Pure Appl. Math. XLII (1989) 79-113. | Zbl

[21] F. Pradel, Homogénéisation des milieux continus et discrets périodiques orientés. Thèse de l'École Nationale des Ponts et Chaussées (1998).

[22] E. Sanchez-Palencia, Non Homogeneous Media and Vibration Theory, Monographs in Physics 127. Springer-Verlag, Berlin (1980). | MR | Zbl

[23] D.D. Streeter, Gross morphology and fiber geometry of the heart, in Handbook of Physiology. The cardiovascular system, R.M. Berne, N. Sperelakis and S.R. Geiger Eds., Am. Phys. Soc. Williams & Wilkins, Baltimore (1979).

[24] L.A. Taber and R. Perucchio, Modeling heart development. J. Elasticity 61 (2000) 165-197. | Zbl

[25] H. Tollenaere and D. Caillerie, Continuous modeling of lattice structures by homogenization. Adv. Engrg. Software 29 (1998) 699-705.

[26] C. Truesdell, A First Course in Rational Continuum Mechanics. Academic Press, New York (1977). | MR | Zbl

[27] T.P. Usyk, R. Mazhari and A.D. Mcculloch, Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elasticity 61 (2000) 143-165. | Zbl

[28] K. Washizu, Variational Methods in Elasticity and Plasticity. 2nd ed., Pergamon Press (1975). | MR | Zbl

[29] F.C.P. Yin, R.K. Strumpf, P.H. Chew and S.L. Zeger, Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20 (1987) 577-589.

[30] M. Zile, M.K. Cowles, J.M. Buckley, K. Richardson, B.A. Cowles, C.F. Baicu, G. Cooper IV abd V. Gharpuray, Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells. Am. J. Physiol. 274 (1998) H2188-2202.

  • Cuomo, Massimo; Boutin, Claude; Pannitteri, Carmelo Large Deformation Behavior of Plane Periodic Truss Networks. Part 1. Closed-Form Solution for Single Node Cells, Journal of Elasticity, Volume 157 (2025) no. 1 | DOI:10.1007/s10659-025-10109-9
  • Lamsfuss, Jens; Bargmann, Swantje Python codes to generate skeletal muscle models on each hierarchical level, Software Impacts, Volume 14 (2022), p. 100437 | DOI:10.1016/j.simpa.2022.100437
  • Rocha, Felipe Figueredo; Blanco, Pablo Javier; Sánchez, Pablo Javier; Feijóo, Raúl Antonino Multi-scale modelling of arterial tissue: Linking networks of fibres to continua, Computer Methods in Applied Mechanics and Engineering, Volume 341 (2018), p. 740 | DOI:10.1016/j.cma.2018.06.031
  • Mourad, Ayman; Zalzali, Ibrahim Discrete and homogenized mechanical models for single walled carbon nanotubes, Mathematics and Mechanics of Solids, Volume 21 (2016) no. 7, p. 773 | DOI:10.1177/1081286514537011
  • Lewicka, Marta; Ochoa, Pablo On the Variational Limits of Lattice Energies on Prestrained Elastic Bodies, Differential Geometry and Continuum Mechanics, Volume 137 (2015), p. 279 | DOI:10.1007/978-3-319-18573-6_10
  • Chesnais, Céline; Boutin, Claude; Hans, Stéphane Wave propagation and non-local effects in periodic frame materials: Generalized continuum mechanics, Mathematics and Mechanics of Solids, Volume 20 (2015) no. 8, p. 929 | DOI:10.1177/1081286513511092
  • Weise, Louis D.; Panfilov, Alexander V. Discrete Mechanical Modeling of Mechanoelectrical Feedback in Cardiac Tissue: Novel Mechanisms of Spiral Wave Initiation, Modeling the Heart and the Circulatory System, Volume 14 (2015), p. 29 | DOI:10.1007/978-3-319-05230-4_2
  • Chesnais, C.; Boutin, C.; Hans, S. Effects of the local resonance in bending on the longitudinal vibrations of reticulated beams, Wave Motion, Volume 57 (2015), p. 1 | DOI:10.1016/j.wavemoti.2015.03.001
  • Sermesant, M.; Chabiniok, R.; Chinchapatnam, P.; Mansi, T.; Billet, F.; Moireau, P.; Peyrat, J.M.; Wong, K.; Relan, J.; Rhode, K.; Ginks, M.; Lambiase, P.; Delingette, H.; Sorine, M.; Rinaldi, C.A.; Chapelle, D.; Razavi, R.; Ayache, N. Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: A preliminary clinical validation, Medical Image Analysis, Volume 16 (2012) no. 1, p. 201 | DOI:10.1016/j.media.2011.07.003
  • Jones, Gareth Wyn; Chapman, S. Jonathan Modeling Growth in Biological Materials, SIAM Review, Volume 54 (2012) no. 1, p. 52 | DOI:10.1137/080731785
  • Alicandro, Roberto; Cicalese, Marco; Gloria, Antoine Integral Representation Results for Energies Defined on Stochastic Lattices and Application to Nonlinear Elasticity, Archive for Rational Mechanics and Analysis, Volume 200 (2011) no. 3, p. 881 | DOI:10.1007/s00205-010-0378-7
  • Weise, Louis D.; Nash, Martyn P.; Panfilov, Alexander V.; Breakspear, Michael A Discrete Model to Study Reaction-Diffusion-Mechanics Systems, PLoS ONE, Volume 6 (2011) no. 7, p. e21934 | DOI:10.1371/journal.pone.0021934
  • Fernández, Miguel Ángel; Gerbeau, Jean-Frédéric; Gloria, Antoine; Vidrascu, Marina A partitioned Newton method for the interaction of a fluid and a 3D shell structure, European Journal of Computational Mechanics, Volume 19 (2010) no. 5-7, p. 479 | DOI:10.3166/ejcm.19.479-512
  • Sermesant, Maxime; Razavi, Reza Personalized Computational Models of the Heart for Cardiac Resynchronization Therapy, Patient-Specific Modeling of the Cardiovascular System (2010), p. 167 | DOI:10.1007/978-1-4419-6691-9_10
  • Raoult, Annie Quasiconvex envelopes in nonlinear elasticity, Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, Volume 516 (2010), p. 17 | DOI:10.1007/978-3-7091-0174-2_2
  • Schmid, H.; Hunter, P. J. Multi-scale Modelling of the Heart, Biomechanical Modelling at the Molecular, Cellular and Tissue Levels, Volume 508 (2009), p. 83 | DOI:10.1007/978-3-211-95875-9_2
  • Verdier, Claude; Etienne, Jocelyn; Duperray, Alain; Preziosi, Luigi Review: Rheological properties of biological materials, Comptes Rendus. Physique, Volume 10 (2009) no. 8, p. 790 | DOI:10.1016/j.crhy.2009.10.003
  • Sermesant, Maxime; Billet, Florence; Chabiniok, Radomir; Mansi, Tommaso; Chinchapatnam, Phani; Moireau, Philippe; Peyrat, Jean-Marc; Rhode, Kawal; Ginks, Matt; Lambiase, Pier; Arridge, Simon; Delingette, Hervé; Sorine, Michel; Rinaldi, C. Aldo; Chapelle, Dominique; Razavi, Reza; Ayache, Nicholas Personalised Electromechanical Model of the Heart for the Prediction of the Acute Effects of Cardiac Resynchronisation Therapy, Functional Imaging and Modeling of the Heart, Volume 5528 (2009), p. 239 | DOI:10.1007/978-3-642-01932-6_26
  • Raoult, Annie; Caillerie, Denis; Mourad, Ayman Elastic lattices: equilibrium, invariant laws and homogenization, ANNALI DELL'UNIVERSITA' DI FERRARA, Volume 54 (2008) no. 2, p. 297 | DOI:10.1007/s11565-008-0054-0
  • Sermesant, Maxime; Peyrat, Jean-Marc; Chinchapatnam, Phani; Billet, Florence; Mansi, Tommaso; Rhode, Kawal; Delingette, Hervé; Razavi, Reza; Ayache, Nicholas Toward Patient-Specific Myocardial Models of the Heart, Heart Failure Clinics, Volume 4 (2008) no. 3, p. 289 | DOI:10.1016/j.hfc.2008.02.014
  • Davini, C.; Governatori, P. Nets with Hexagonal Cell Structure, Journal of Elasticity, Volume 92 (2008) no. 1, p. 35 | DOI:10.1007/s10659-007-9148-7
  • Manceau, David Small amplitude homogenization applied to models of non-periodic fibrous materials, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 41 (2007) no. 6, p. 1061 | DOI:10.1051/m2an:2007050
  • Chotard-Ghodsnia, R.; Verdier, C. Rheology of Living Materials, Modeling of Biological Materials (2007), p. 1 | DOI:10.1007/978-0-8176-4411-6_1
  • Thiriet, M. Biochemical and Biomechanical Aspects of Blood Flow, Modeling of Biological Materials (2007), p. 33 | DOI:10.1007/978-0-8176-4411-6_2
  • Caillerie, Denis; Mourad, Ayman; Raoult, Annie Discrete Homogenization in Graphene Sheet Modeling, Journal of Elasticity, Volume 84 (2006) no. 1, p. 33 | DOI:10.1007/s10659-006-9053-5

Cité par 25 documents. Sources : Crossref