We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice reference cell.
Mots-clés : myocardium, constitutive law, homogenization, large deformations
@article{M2AN_2003__37_4_681_0, author = {Caillerie, Denis and Mourad, Ayman and Raoult, Annie}, title = {Cell-to-muscle homogenization. {Application} to a constitutive law for the myocardium}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {681--698}, publisher = {EDP-Sciences}, volume = {37}, number = {4}, year = {2003}, doi = {10.1051/m2an:2003054}, mrnumber = {2018437}, zbl = {1070.74030}, language = {en}, url = {https://numdam.org/articles/10.1051/m2an:2003054/} }
TY - JOUR AU - Caillerie, Denis AU - Mourad, Ayman AU - Raoult, Annie TI - Cell-to-muscle homogenization. Application to a constitutive law for the myocardium JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 681 EP - 698 VL - 37 IS - 4 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/m2an:2003054/ DO - 10.1051/m2an:2003054 LA - en ID - M2AN_2003__37_4_681_0 ER -
%0 Journal Article %A Caillerie, Denis %A Mourad, Ayman %A Raoult, Annie %T Cell-to-muscle homogenization. Application to a constitutive law for the myocardium %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 681-698 %V 37 %N 4 %I EDP-Sciences %U https://numdam.org/articles/10.1051/m2an:2003054/ %R 10.1051/m2an:2003054 %G en %F M2AN_2003__37_4_681_0
Caillerie, Denis; Mourad, Ayman; Raoult, Annie. Cell-to-muscle homogenization. Application to a constitutive law for the myocardium. ESAIM: Modélisation mathématique et analyse numérique, Special issue on Biological and Biomedical Applications, Tome 37 (2003) no. 4, pp. 681-698. doi : 10.1051/m2an:2003054. https://numdam.org/articles/10.1051/m2an:2003054/
[1] A model of the mechanics of the left ventricle. Ann. Biomed. Engrg. 7 (1979) 299-318.
, and ,[2] Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). | MR | Zbl
, and ,[3] Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer-Verlag, New York (1991). | MR | Zbl
and ,[4] Three models of non periodic fibrous materials obtained by homogenization. ESAIM: M2AN 27 (1993) 759-775. | Numdam | Zbl
,[5] Loi de comportement en grandes déformations du muscle à fibres actives. Application à la mécanique du cœur humain et à sa croissance. Thèse de l'Université de Savoie (1998).
,[6] Les techniques de changement d'échelles dans les milieux granulaires, in Micromécanique des milieux granulaires. Hermès Sciences, Paris (2001).
and ,[7] Mechanics of the left ventricle. Biophys. J. 112 (1982) 333-339.
,[8] A Physiologically-Based Model for the Active Cardiac Muscle Contraction, in Functional Imaging and Modeling of the Heart, Katila, Magnin, Clarysse, Montagnat and Nenonen Eds., LNCS 2230. Springer (2001) 128-133. | Zbl
, , , , and ,[9] Mathematical Elasticity. Vol. 1: Three-Dimensional Elasticity. North-Holland, Amsterdam (1987). | MR | Zbl
,[10] Homogenization of Reticulated Structures, Applied Mathematical Science 136. Springer-Verlag, New York (1999). | MR | Zbl
and ,[11] Biomechanics: Mechanical Properties of Living Tissues. 2nd ed., Springer-Verlag, New York (1993). | Zbl
,[12] An Introduction to Continuum Mechanics. Academic Press, San Diego (1981). | MR | Zbl
,[13] Three-dimensional cartography of the pattern of the myofibres in the second trimester fetal human heart. Anat. Embryol. 202 (2000) 103-118.
, , and ,[14] Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Engrg. 112 (1990) 333-339.
, and ,[15] Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J. Biomech. Engrg. 112 (1990) 340-346.
, and ,[16] A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Engrg. 120 (1998) 504-517.
and ,[17] Continuum modeling of lattice structures in large displacement. Applications to buckling analysis. Comput. & Structures 68 (1998) 181-189. | Zbl
and ,[18] Geometrical modelling of the fibre organization in the human left ventricle, in Functional Imaging and Modeling of the Heart, Katila, Magnin, Clarysse, Montagnat, Nenonen Eds., LNCS 2230. Springer (2001) 32-38. | Zbl
, , , , , and ,[19] Computational mechanics of the heart. J. Elasticity 61 (2000) 113-141. | Zbl
and ,[20] Fiber architecture of the left ventricular wall: An asymptotic analysis. Comm. Pure Appl. Math. XLII (1989) 79-113. | Zbl
,[21] Homogénéisation des milieux continus et discrets périodiques orientés. Thèse de l'École Nationale des Ponts et Chaussées (1998).
,[22] Non Homogeneous Media and Vibration Theory, Monographs in Physics 127. Springer-Verlag, Berlin (1980). | MR | Zbl
,[23] Gross morphology and fiber geometry of the heart, in Handbook of Physiology. The cardiovascular system, R.M. Berne, N. Sperelakis and S.R. Geiger Eds., Am. Phys. Soc. Williams & Wilkins, Baltimore (1979).
,[24] Modeling heart development. J. Elasticity 61 (2000) 165-197. | Zbl
and ,[25] Continuous modeling of lattice structures by homogenization. Adv. Engrg. Software 29 (1998) 699-705.
and ,[26] A First Course in Rational Continuum Mechanics. Academic Press, New York (1977). | MR | Zbl
,[27] Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elasticity 61 (2000) 143-165. | Zbl
, and ,[28] Variational Methods in Elasticity and Plasticity. 2nd ed., Pergamon Press (1975). | MR | Zbl
,[29] Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20 (1987) 577-589.
, , and ,[30] IV abd V. Gharpuray, Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells. Am. J. Physiol. 274 (1998) H2188-2202.
, , , , , ,- Large Deformation Behavior of Plane Periodic Truss Networks. Part 1. Closed-Form Solution for Single Node Cells, Journal of Elasticity, Volume 157 (2025) no. 1 | DOI:10.1007/s10659-025-10109-9
- Python codes to generate skeletal muscle models on each hierarchical level, Software Impacts, Volume 14 (2022), p. 100437 | DOI:10.1016/j.simpa.2022.100437
- Multi-scale modelling of arterial tissue: Linking networks of fibres to continua, Computer Methods in Applied Mechanics and Engineering, Volume 341 (2018), p. 740 | DOI:10.1016/j.cma.2018.06.031
- Discrete and homogenized mechanical models for single walled carbon nanotubes, Mathematics and Mechanics of Solids, Volume 21 (2016) no. 7, p. 773 | DOI:10.1177/1081286514537011
- On the Variational Limits of Lattice Energies on Prestrained Elastic Bodies, Differential Geometry and Continuum Mechanics, Volume 137 (2015), p. 279 | DOI:10.1007/978-3-319-18573-6_10
- Wave propagation and non-local effects in periodic frame materials: Generalized continuum mechanics, Mathematics and Mechanics of Solids, Volume 20 (2015) no. 8, p. 929 | DOI:10.1177/1081286513511092
- Discrete Mechanical Modeling of Mechanoelectrical Feedback in Cardiac Tissue: Novel Mechanisms of Spiral Wave Initiation, Modeling the Heart and the Circulatory System, Volume 14 (2015), p. 29 | DOI:10.1007/978-3-319-05230-4_2
- Effects of the local resonance in bending on the longitudinal vibrations of reticulated beams, Wave Motion, Volume 57 (2015), p. 1 | DOI:10.1016/j.wavemoti.2015.03.001
- Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: A preliminary clinical validation, Medical Image Analysis, Volume 16 (2012) no. 1, p. 201 | DOI:10.1016/j.media.2011.07.003
- Modeling Growth in Biological Materials, SIAM Review, Volume 54 (2012) no. 1, p. 52 | DOI:10.1137/080731785
- Integral Representation Results for Energies Defined on Stochastic Lattices and Application to Nonlinear Elasticity, Archive for Rational Mechanics and Analysis, Volume 200 (2011) no. 3, p. 881 | DOI:10.1007/s00205-010-0378-7
- A Discrete Model to Study Reaction-Diffusion-Mechanics Systems, PLoS ONE, Volume 6 (2011) no. 7, p. e21934 | DOI:10.1371/journal.pone.0021934
- A partitioned Newton method for the interaction of a fluid and a 3D shell structure, European Journal of Computational Mechanics, Volume 19 (2010) no. 5-7, p. 479 | DOI:10.3166/ejcm.19.479-512
- Personalized Computational Models of the Heart for Cardiac Resynchronization Therapy, Patient-Specific Modeling of the Cardiovascular System (2010), p. 167 | DOI:10.1007/978-1-4419-6691-9_10
- Quasiconvex envelopes in nonlinear elasticity, Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, Volume 516 (2010), p. 17 | DOI:10.1007/978-3-7091-0174-2_2
- Multi-scale Modelling of the Heart, Biomechanical Modelling at the Molecular, Cellular and Tissue Levels, Volume 508 (2009), p. 83 | DOI:10.1007/978-3-211-95875-9_2
- Review: Rheological properties of biological materials, Comptes Rendus. Physique, Volume 10 (2009) no. 8, p. 790 | DOI:10.1016/j.crhy.2009.10.003
- Personalised Electromechanical Model of the Heart for the Prediction of the Acute Effects of Cardiac Resynchronisation Therapy, Functional Imaging and Modeling of the Heart, Volume 5528 (2009), p. 239 | DOI:10.1007/978-3-642-01932-6_26
- Elastic lattices: equilibrium, invariant laws and homogenization, ANNALI DELL'UNIVERSITA' DI FERRARA, Volume 54 (2008) no. 2, p. 297 | DOI:10.1007/s11565-008-0054-0
- Toward Patient-Specific Myocardial Models of the Heart, Heart Failure Clinics, Volume 4 (2008) no. 3, p. 289 | DOI:10.1016/j.hfc.2008.02.014
- Nets with Hexagonal Cell Structure, Journal of Elasticity, Volume 92 (2008) no. 1, p. 35 | DOI:10.1007/s10659-007-9148-7
- Small amplitude homogenization applied to models of non-periodic fibrous materials, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 41 (2007) no. 6, p. 1061 | DOI:10.1051/m2an:2007050
- Rheology of Living Materials, Modeling of Biological Materials (2007), p. 1 | DOI:10.1007/978-0-8176-4411-6_1
- Biochemical and Biomechanical Aspects of Blood Flow, Modeling of Biological Materials (2007), p. 33 | DOI:10.1007/978-0-8176-4411-6_2
- Discrete Homogenization in Graphene Sheet Modeling, Journal of Elasticity, Volume 84 (2006) no. 1, p. 33 | DOI:10.1007/s10659-006-9053-5
Cité par 25 documents. Sources : Crossref