A mixed-FEM and BEM coupling for a three-dimensional eddy current problem
ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 2, pp. 291-318.

We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed-FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.

DOI : 10.1051/m2an:2003027
Classification : 65N30, 65N38, 65N15
Mots-clés : Eddy-current, boundary element, mixed finite element
@article{M2AN_2003__37_2_291_0,
     author = {Meddahi, Salim and Selgas, Virginia},
     title = {A {mixed-FEM} and {BEM} coupling for a three-dimensional eddy current problem},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {291--318},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {2},
     year = {2003},
     doi = {10.1051/m2an:2003027},
     zbl = {1031.78012},
     language = {en},
     url = {https://numdam.org/articles/10.1051/m2an:2003027/}
}
TY  - JOUR
AU  - Meddahi, Salim
AU  - Selgas, Virginia
TI  - A mixed-FEM and BEM coupling for a three-dimensional eddy current problem
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2003
SP  - 291
EP  - 318
VL  - 37
IS  - 2
PB  - EDP-Sciences
UR  - https://numdam.org/articles/10.1051/m2an:2003027/
DO  - 10.1051/m2an:2003027
LA  - en
ID  - M2AN_2003__37_2_291_0
ER  - 
%0 Journal Article
%A Meddahi, Salim
%A Selgas, Virginia
%T A mixed-FEM and BEM coupling for a three-dimensional eddy current problem
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2003
%P 291-318
%V 37
%N 2
%I EDP-Sciences
%U https://numdam.org/articles/10.1051/m2an:2003027/
%R 10.1051/m2an:2003027
%G en
%F M2AN_2003__37_2_291_0
Meddahi, Salim; Selgas, Virginia. A mixed-FEM and BEM coupling for a three-dimensional eddy current problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 2, pp. 291-318. doi : 10.1051/m2an:2003027. https://numdam.org/articles/10.1051/m2an:2003027/

[1] A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comp. 68 (1999) 607-631. | Zbl

[2] H. Ammari, A. Buffa and J.-C. Nédélec, A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 60 (2000) 1805-1823. | Zbl

[3] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21 (1998) 823-864. | Zbl

[4] A. Bermúdez, R. Rodríguez and P. Salgado, A finite element method with Lagrange multipliers for low-frequency harmonic Maxell equations. SIAM J. Numer. Anal. 40 (2002) 1823-1849. | Zbl

[5] A. Bossavit and J. Vérité, The TRIFOU code: Solving the 3-D eddy-currents problem by using H as state variable. IEEE Trans. Mag. 19 (1983) 2465-2470.

[6] A. Bossavit, Two dual formulations of the 3-D eddy-currents problem. COMPEL 4 (1985) 103-116.

[7] A. Bossavit, A rationale for edge elements in 3-D field computations. IEEE Trans. Mag. 24 (1988) 74-79.

[8] A. Bossavit, The computation of eddy-currents in dimension 3 by using mixed finite elements and boundary elements in association. Math. Comput. Modelling 15 (1991) 33-42. | Zbl

[9] A. Bossavit, Électromagnétisme, en vue de la modélisation. Springer-Verlag, Paris, Berlin, Heidelberg (1993). | MR | Zbl

[10] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer, Berlin, Heidelberg, New York (1991). | MR | Zbl

[11] A. Buffa, Hodge decompositions on the boundary of a polyhedron: the multi-connected case. Math. Models Methods Appl. Sci. 11 (2001) 1491-1504. | Zbl

[12] A. Buffa, Traces for functional spaces related to Maxwell equations: an overview, in Proceedings of GAMM-Workshop, Kiel (2001).

[13] A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell's equation. Part I: An integration by parts formula in lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9-30. | Zbl

[14] A. Buffa, M. Costabel and D. Sheen, On traces for 𝐇(rot,Ω) in Lipschitz domains. University of Pavia, IAN-CNR 1185 (2000). | Zbl

[15] A. Buffa, M. Costabel and Ch. Schwab, Boundary element methods for Maxwell's equations on non-smooth domains. Numer. Math. (2001) (electronic) DOI 10.1007/s002110100372. | Zbl

[16] M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements, in The Mathematics of Finite Elements and Applications IV, Academic Press, London (1988). | MR | Zbl

[17] R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 5. Masson, Paris, Milan, Barcelone (1988). | MR | Zbl

[18] G.N. Gatica and G.C. Hsiao, Boundary-field equation methods for a class of nonlinear problems. Longman (1995). | MR | Zbl

[19] V. Girault and P.A. Raviart, Finite element approximation of the Navier-Stokes equations: theory and algorithms. Springer, Berlin, Heidelberg, New York (1986). | MR | Zbl

[20] R. Hiptmair, Symmetric coupling for eddy current problems. SIAM J. Numer. Anal. 40 (2002) 41-65. | Zbl

[21] C. Johnson and J.C. Nédélec, On the coupling of boundary integral and finite element methods. Math. Comp. 35 (1980) 1063-1079. | Zbl

[22] W. Mclean, Strongly elliptic systems and boundary integral equations. Cambridge University Press (2000). | MR | Zbl

[23] S. Meddahi, An optimal iterative process for the Johnson-Nedelec method of coupling boundary and finite elements. SIAM J. Numer. Anal. 35 (1998) 1393-1415. | Zbl

[24] S. Meddahi, A mixed-FEM and BEM coupling for a two-dimensional eddy current problem. Numer. Funct. Anal. Optim. 22 (2001) 675-696. | Zbl

[25] S. Meddahi and F.J. Sayas, A fully discrete BEM-FEM for the exterior Stokes problem in the plane. SIAM J. Numer. Anal. 37 (2000) 2082-2102. | Zbl

[26] S. Meddahi, J. Valdés, O. Menéndez and P. Pérez, On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math. 69 (1996) 127-141. | Zbl

[27] J.C. Nédélec, Mixed finite elements in 3. Numer. Math. 35 (1980) 315-341. | Zbl

[28] J.C. Nédélec, Acoustic and electromagnetic equations. Integral representations for harmonic problems. Springer-Verlag, New York (2001). | MR | Zbl

[29] J.E. Roberts and J.M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1991) 523-639. | Zbl

  • Rodríguez, A. Alonso; Camaño, J. A Graph-Based Algorithm for the Approximation of the Spectrum of the Curl Operator, SIAM Journal on Scientific Computing, Volume 45 (2023) no. 1, p. A147 | DOI:10.1137/21m1460557
  • Acevedo, Ramiro; Gómez, Christian; López-Rodríguez, Bibiana Fully discrete finite element approximation for a family of degenerate parabolic mixed equations, Computers Mathematics with Applications, Volume 96 (2021), p. 155 | DOI:10.1016/j.camwa.2021.05.010
  • Acevedo, Ramiro; Gómez, Christian; López-Rodríguez, Bibiana Well-posedness of a family of degenerate parabolic mixed equations, Journal of Mathematical Analysis and Applications, Volume 498 (2021) no. 1, p. 124903 | DOI:10.1016/j.jmaa.2020.124903
  • Gatica, Gabriel N.; Hsiao, George C.; Meddahi, Salim Further developments on boundary-field equation methods for nonlinear transmission problems, Journal of Mathematical Analysis and Applications, Volume 502 (2021) no. 2, p. 125262 | DOI:10.1016/j.jmaa.2021.125262
  • Rodríguez, Ana Alonso; Márquez, Antonio; Meddahi, Salim; Valli, Alberto A discontinuous Galerkin method for a time-harmonic eddy current problem, Calcolo, Volume 55 (2018) no. 3 | DOI:10.1007/s10092-018-0267-2
  • Alonso-Rodríguez, A.; Camaño, J.; Rodríguez, R.; Valli, A.; Venegas, P. Finite Element Approximation of the Spectrum of the Curl Operator in a Multiply Connected Domain, Foundations of Computational Mathematics, Volume 18 (2018) no. 6, p. 1493 | DOI:10.1007/s10208-018-9373-4
  • Lara, Eduardo; Rodríguez, Rodolfo; Venegas, Pablo Spectral approximation of the curl operator in multiply connected domains, Discrete Continuous Dynamical Systems - S, Volume 9 (2016) no. 1, p. 235 | DOI:10.3934/dcdss.2016.9.235
  • Alonso Rodríguez, Ana; Bertolazzi, Enrico; Ghiloni, Riccardo; Valli, Alberto Finite element simulation of eddy current problems using magnetic scalar potentials, Journal of Computational Physics, Volume 294 (2015), p. 503 | DOI:10.1016/j.jcp.2015.03.060
  • Selgas, V. A symmetric BEM–FEM method for an axisymmetric eddy current problem, Applied Numerical Mathematics, Volume 79 (2014), p. 107 | DOI:10.1016/j.apnum.2014.02.001
  • Radcliffe, A. J. FEM‐BEM coupling for the exterior Stokes problem with non‐conforming finite elements and an application to small droplet deformation dynamics, International Journal for Numerical Methods in Fluids, Volume 68 (2012) no. 4, p. 522 | DOI:10.1002/fld.2518
  • Camaño, Jessika; Rodríguez, Rodolfo Analysis of a FEM–BEM model posed on the conducting domain for the time-dependent eddy current problem, Journal of Computational and Applied Mathematics, Volume 236 (2012) no. 13, p. 3084 | DOI:10.1016/j.cam.2012.01.030
  • Bermúdez, A.; Gómez, D.; Muñiz, M.C.; Vázquez, R. A thermo-electrical problem with a nonlocal radiation boundary condition, Mathematical and Computer Modelling, Volume 53 (2011) no. 1-2, p. 63 | DOI:10.1016/j.mcm.2010.07.019
  • Rodríguez, Ana Alonso; Valli, Alberto A FEM-BEM approach for electro-magnetostatics and time-harmonic eddy-current problems, Applied Numerical Mathematics, Volume 59 (2009) no. 9, p. 2036 | DOI:10.1016/j.apnum.2008.12.002
  • Acevedo, Ramiro; Meddahi, Salim; Rodríguez, Rodolfo An 𝐸-based mixed formulation for a time-dependent eddy current problem, Mathematics of Computation, Volume 78 (2009) no. 268, p. 1929 | DOI:10.1090/s0025-5718-09-02254-6
  • Meddahi, Salim; Selgas, Virginia An H-based FEM-BEM formulation for a time dependent eddy current problem, Applied Numerical Mathematics, Volume 58 (2008) no. 8, p. 1061 | DOI:10.1016/j.apnum.2007.04.002
  • Salgado, P.; Selgas, V. A symmetric BEM–FEM coupling for the three-dimensional magnetostatic problem using scalar potentials, Engineering Analysis with Boundary Elements, Volume 32 (2008) no. 8, p. 633 | DOI:10.1016/j.enganabound.2007.12.006
  • Rapún, María-Luisa; Sayas, Francisco-Javier A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 40 (2006) no. 5, p. 871 | DOI:10.1051/m2an:2006033
  • Gatica, Gabriel; Sayas, Francisco-Javier An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods, Mathematics of Computation, Volume 75 (2006) no. 256, p. 1675 | DOI:10.1090/s0025-5718-06-01864-3
  • Meddahi, S.; Selgas, V. A FEM—BEM Formulation for a Time—Dependent Eddy Current Problem, Numerical Mathematics and Advanced Applications (2006), p. 1155 | DOI:10.1007/978-3-540-34288-5_116
  • Bermúdez, Alfredo; Rodríguez, Rodolfo; Salgado, Pilar Numerical analysis of electric field formulations of the eddy current model, Numerische Mathematik, Volume 102 (2005) no. 2, p. 181 | DOI:10.1007/s00211-005-0652-z

Cité par 20 documents. Sources : Crossref