Nous étudions le cas quadratique d’une conjecture énoncée par Van der Geer et Schoof prédisant le comportement de certaines fonctions définies sur le groupe des diviseurs d’Arakelov d’un corps de nombres. Ces fonctions correspondent à la fonction usuelle
We study the quadratic case of a conjecture made by Van der Geer and Schoof about the behaviour of certain functions which are defined over the group of Arakelov divisors of a number field. These functions correspond to the standard function
@article{JTNB_2001__13_1_125_0, author = {Francini, Paolo}, title = {The size function $h^0$ for quadratic number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {125--135}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {1}, year = {2001}, mrnumber = {1838075}, zbl = {1060.11076}, language = {en}, url = {https://numdam.org/item/JTNB_2001__13_1_125_0/} }
Francini, Paolo. The size function $h^0$ for quadratic number fields. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 1, pp. 125-135. https://numdam.org/item/JTNB_2001__13_1_125_0/
[1] New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296 (1993), 625-635. | MR | Zbl
,[2] Convolution structures and arithmetic cohomology. Math. AG/9807151 at http://xxx.lanl.gov, 1998.
,[3] Effectivity of Arakelov divisors and the theta divisor of a number field. Math. AG/9802121 at http://xxx.lanl.gov, 1999. | MR
, ,[4] The size function for number fields. Doctoraalscriptie, Universiteit van Amsterdam, 1999.
,[5] A course in number theory. Oxford University Press, 1988. | MR | Zbl
,