Un
A Diophantine
@article{JTNB_2001__13_1_111_0, author = {Dujella, Andrej}, title = {Diophantine $m$-tuples and elliptic curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {111--124}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {1}, year = {2001}, mrnumber = {1838074}, zbl = {1046.11034}, language = {en}, url = {https://numdam.org/item/JTNB_2001__13_1_111_0/} }
Dujella, Andrej. Diophantine $m$-tuples and elliptic curves. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 1, pp. 111-124. https://numdam.org/item/JTNB_2001__13_1_111_0/
[1] On Euler's solution of a problem of Diophantus. Fibonacci Quart. 17 (1979), 333-339. | MR | Zbl
, , ,[2] The equations 3x2 - 2 = y2 and 8x2 - 7 = z2. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. | MR | Zbl
, ,[3] Logarithmic forms and group varieties. J. Reine Angew. Math. 442 (1993), 19-62. | MR | Zbl
, ,[4] Lucas and Fibonacci numbers and some Diophantine equations. Proc. Glasgow Math. Assoc. 7 (1965), 24-28. | MR | Zbl
,[5] Algorithms for Modular Elliptic Curves. Cambridge Univ. Press, 1997. | MR | Zbl
,[6] History of the Theory of Numbers. Vol. 2, Chelsea, New York, 1966, pp. 513-520. | Zbl
,[7] Arithmetics and the Book of Polygonal Numbers. (I.G. Bashmakova, Ed.), Nauka, Moscow, 1974 (in Russian), pp. 103-104, 232.
,[8] On Diophantine quintuples. Acta Arith. 81 (1997), 69-79. | MR | Zbl
,[9] The problem of the extension of a parametric family of Diophantine triples. Publ. Math. Debrecen 51 (1997), 311-322. | MR | Zbl
,[10] A proof of the Hoggatt-Bergum conjecture. Proc. Amer. Math. Soc. 127 (1999), 1999-2005. | MR | Zbl
,[11] A parametric family of elliptic curves. Acta Arith. 94 (2000), 87-101. | MR | Zbl
,[12] Absolute bound for the size of Diophantine m-tuples. J. Number Theory, to appear. | MR | Zbl
,[13] A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306. | MR | Zbl
, ,[14] Integer points on a family of elliptic curves. Publ. Math. Debrecen 56 (2000), 321-335. | MR | Zbl
, ,[15] On Fermat's quadruple equations. Abh. Math. Sem. Univ. Hamburg 69 (1999), 283-291. | MR | Zbl
, , ,[16] A problem of Fermat and the Fibonacci sequence. Fibonacci Quart. 15(1977), 323-330. | MR | Zbl
, ,[17] Elliptic Curves. Springer-Verlag, New York, 1987. | MR | Zbl
,[18] A second variation on a problem of Diophantus and Davenport. Fibonacci Quart. 16 (1978), 155-165. | MR | Zbl
,[19] Solving constrained Pell equations. Math. Comp. 67 (1998), 833-842. | MR | Zbl
,[20] Elliptic Curves. Princeton Univ. Press, 1992. | MR | Zbl
,[21] Rational isogenies of prime degree. Invent. Math. 44 (1978), 129-162. | MR | Zbl
,[22] Introduction to Number Theory. Almqvist, Stockholm; Wiley, New York, 1951. | MR | Zbl
,[23] Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns. Nova Acta Soc. Sci. Upsal. 16 (1954), 1-38. | MR | Zbl
,[24] Euler's concordant forms. Acta Arith. 78 (1996), 101-123. | MR | Zbl
,[25] S-integral points on elliptic curves and Fermat's triple equations. In: Algorithmic Number Theory, (J. P. Buhler, ed.), Lecture Notes in Comput. Sci. 1423 (1998), 528-540. | Zbl
, , ,[26] SIMATH manual, Universität des Saarlandes, Saarbrücken, 1997.
[27] The equations z2 - 3y2 = -2 and z2 - 6x2 = -5, in: A Collection of Manuscripts Related to the Fibonacci Sequence. (V. E. Hoggatt, M. Bicknell-Johnson, eds.), The Fibonacci Association, Santa Clara, 1980, pp. 71-75. | MR | Zbl
,[28] Elliptische Kurven: Fortschritte und Anwendungen. Jahresber. Deutsch. Math.-Verein 92 (1990), 58-76. | MR | Zbl
,