Remarks on global existence and compactness for L2 solutions in the critical nonlinear schrödinger equation in 2D
Journées équations aux dérivées partielles (1998), article no. 13, 9 p.

In the talk we shall present some recent results obtained with F. Merle about compactness of blow up solutions of the critical nonlinear Schrödinger equation for initial data in L2(𝐑2). They are based on and are complementary to some previous work of J. Bourgain about the concentration of the solution when it approaches to the blow up time.

@incollection{JEDP_1998____A13_0,
     author = {Gonzalez, Luis Vega},
     title = {Remarks on global existence and compactness for $L^2$ solutions in the critical nonlinear schr\"odinger equation in {2D}},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {13},
     pages = {1--9},
     publisher = {Universit\'e de Nantes},
     year = {1998},
     zbl = {01808722},
     language = {en},
     url = {https://numdam.org/item/JEDP_1998____A13_0/}
}
TY  - JOUR
AU  - Gonzalez, Luis Vega
TI  - Remarks on global existence and compactness for $L^2$ solutions in the critical nonlinear schrödinger equation in 2D
JO  - Journées équations aux dérivées partielles
PY  - 1998
SP  - 1
EP  - 9
PB  - Université de Nantes
UR  - https://numdam.org/item/JEDP_1998____A13_0/
LA  - en
ID  - JEDP_1998____A13_0
ER  - 
%0 Journal Article
%A Gonzalez, Luis Vega
%T Remarks on global existence and compactness for $L^2$ solutions in the critical nonlinear schrödinger equation in 2D
%J Journées équations aux dérivées partielles
%D 1998
%P 1-9
%I Université de Nantes
%U https://numdam.org/item/JEDP_1998____A13_0/
%G en
%F JEDP_1998____A13_0
Gonzalez, Luis Vega. Remarks on global existence and compactness for $L^2$ solutions in the critical nonlinear schrödinger equation in 2D. Journées équations aux dérivées partielles (1998), article  no. 13, 9 p. https://numdam.org/item/JEDP_1998____A13_0/

[B1] J. Bourgain, Some new estimates on oscillatory integrals, Essays on Fourier Analysis in Honour of E. Stein, Princeton UP 42 (1995), 83-112 | MR | Zbl

[B2] J. Bourgain, Refinements of Strichartz's inequality and applications to 2D-NLS with critical nonlinearity, Preprint | Zbl

[B-L] H. Berestycki, P.L. Lions Nonlinear scalar field equations, Arch. Rat. Mech. Anal., 82 (1983), 313-375 | MR | Zbl

[C] T. Cazenave An introduction to nonlinear Schrödinger equations, Textos de Metodos Matematicos 26 (Rio de Janeiro)

[C-W] T. Cazenave, F. Weissler Some remarks on the nonlinear Schrödinger equation in the critical case, Nonlinear semigroups, partial differential equations and attractors, Lect. Notes in Math., 1394, Spr. Ver., 1989, 18-29 | MR | Zbl

[G] R.T Glassey On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation, J. Math. Phys. 18 (1977), 1794-1797 | MR | Zbl

[G-V] J. Ginibre, G. Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z 170, (1980), 109-136 | MR | Zbl

[K] M.K. Kwong Uniqueness of positive solutions of Δu - u + up = 0 in RN, Arch. Rat. Mech. Ann. 105, (1989), 243-266 | MR | Zbl

[M1] F. Merle Determination of blow-up solutions with minimal mass for non-linear Schrödinger equations with critical power, Duke Math. J., 69, (2) (1993), 427-454 | MR | Zbl

[M2] F. Merle Lower bounds for the blow-up rate of solutions of the Zakharov equation in dimension two Comm. Pure and Appl. Math, Vol. XLIX, (1996), 8, 765-794 | MR | Zbl

[MV] F. Merle, L. Vega Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation. To appear in IMRN, 1998 | Zbl

[MVV] A. Moyua, A. Vargas, L. Vega Restriction theorems and maximal operators related to oscillatory integrals in ℝ³ to appear in Duke Math. J. | Zbl

[St] R. Strichartz Restriction of Fourier transforms to quadratic surfaces and decay of solutions to wave equations, Duke Math J., 44, (1977), 705-714 | MR | Zbl

[W] M.I. Weinstein On the structure and formation of singularities of solutions to nonlinear dispersive equations Comm. P.D.E. 11, (1986), 545-565 | MR | Zbl

[ZSS] V.E. Zakharov, V. V. Sobolev, and V.S. Synach Character of the singularity and stochastic phenomena in self-focusing, Zh. Eksper. Teoret. Fiz. 14 (1971), 390-393