Given a finite set of matrices with integer entries, consider the question of determining whether the semigroup they generated 1) is free; 2) contains the identity matrix; 3) contains the null matrix or 4) is a group. Even for matrices of dimension
@article{ITA_2005__39_1_125_0, author = {Choffrut, Christian and Karhum\"aki, Juhani}, title = {Some decision problems on integer matrices}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {125--131}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/ita:2005007}, mrnumber = {2132582}, zbl = {1081.20066}, language = {en}, url = {https://numdam.org/articles/10.1051/ita:2005007/} }
TY - JOUR AU - Choffrut, Christian AU - Karhumäki, Juhani TI - Some decision problems on integer matrices JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 125 EP - 131 VL - 39 IS - 1 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/ita:2005007/ DO - 10.1051/ita:2005007 LA - en ID - ITA_2005__39_1_125_0 ER -
%0 Journal Article %A Choffrut, Christian %A Karhumäki, Juhani %T Some decision problems on integer matrices %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 125-131 %V 39 %N 1 %I EDP-Sciences %U https://numdam.org/articles/10.1051/ita:2005007/ %R 10.1051/ita:2005007 %G en %F ITA_2005__39_1_125_0
Choffrut, Christian; Karhumäki, Juhani. Some decision problems on integer matrices. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 125-131. doi : 10.1051/ita:2005007. https://numdam.org/articles/10.1051/ita:2005007/
[1] Transductions and context-free languages. B.G. Teubner (1979). | MR | Zbl
,[2] On the undecidability of freeness of matrix semigroups. Internat. J. Algebra Comput. 9 (1999) 295-305. | Zbl
, and ,[3] A remark on the representation of trace monoids. Semigroup Forum 40 (1990) 143-152. | Zbl
,[4] Unique decipherability for partially commutative alphabets. Fund. Inform. X (1987) 323-336. | Zbl
and ,[5] Automata, Languages and Machines, Vol. A. Academic Press (1974). | MR | Zbl
,[6] Decision questions on integer matrices. Lect. Notes Comp. Sci. 2295 (2002) 57-68. | Zbl
,[7] Morphisms, in Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa. Springer-Verlag 1 (1997) 439-510. | Zbl
and ,[8] La finitude des représentations linéaires de semigroupes est décidable. J. Algebra 52 (1978) 437-459. | Zbl
,[9] Some opem problems in combinatorics of words and related areas, in Proc. of RIMS Symposium on Algebraic Systems, Formal Languages and Computation. RIMS Institute 1166 (2000) 118-130. | Zbl
,[10] On the undecidability of the freeness of integer matrix semigroups monoids. Internat. J. Algebra Comput. 1 (1991) 223-226. | Zbl
, and ,[11] Combinatorial Group Theory, of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag 89 (1977). | MR | Zbl
and ,[12] The use of 2 by 2 matrices in combinatorial group theory. Resultate der Mathematik 4 (1981) 171-192. | Zbl
,[13] On finite semigroups of matrices. Theoret. Comput. Sci. 5 (1978) 101-112. | Zbl
and ,[14] On certain insoluble problems concerning matrices (russian). Doklady Akad. Nauk SSSR (N.S.) 57 (1947) 539-542. | Zbl
,[15] Open problems in group theory: http://zebra.sci.ccny.edu/cgi-bin/LINK.CGI?/www/web/problems/oproblems.html
[16] Unsolvability in
[17] An introduction to the Theory of Groups. Ally and Bacon Inc. (1965). | MR | Zbl
,Cité par Sources :