In this paper, we prove some regularity results for the boundary of an open subset of
Mots-clés : shape optimization, calculus of variations, free boundary, geometrical measure theory
@article{COCV_2004__10_1_99_0, author = {Briancon, Tanguy}, title = {Regularity of optimal shapes for the {Dirichlet's} energy with volume constraint}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {99--122}, publisher = {EDP-Sciences}, volume = {10}, number = {1}, year = {2004}, doi = {10.1051/cocv:2003038}, zbl = {1118.35078}, language = {en}, url = {https://numdam.org/articles/10.1051/cocv:2003038/} }
TY - JOUR AU - Briancon, Tanguy TI - Regularity of optimal shapes for the Dirichlet's energy with volume constraint JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 99 EP - 122 VL - 10 IS - 1 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/cocv:2003038/ DO - 10.1051/cocv:2003038 LA - en ID - COCV_2004__10_1_99_0 ER -
%0 Journal Article %A Briancon, Tanguy %T Regularity of optimal shapes for the Dirichlet's energy with volume constraint %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 99-122 %V 10 %N 1 %I EDP-Sciences %U https://numdam.org/articles/10.1051/cocv:2003038/ %R 10.1051/cocv:2003038 %G en %F COCV_2004__10_1_99_0
Briancon, Tanguy. Regularity of optimal shapes for the Dirichlet's energy with volume constraint. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 99-122. doi : 10.1051/cocv:2003038. https://numdam.org/articles/10.1051/cocv:2003038/
[1] An optimization problem with volume constraint. SIAM J. Control Optimization 24 (1986) 191-198. | Zbl
, and ,[2] Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 105-144. | Zbl
and ,[3] Variational problems with two phases and their free boundaries. Trans. Am. Math. Soc. 282 (1984) 431-461. | Zbl
, and ,[4] Problèmes de régularité en optimisation de formes. Ph.D. thesis, université Rennes 1 (2002).
,[5] Variational approach of a magnetic shaping problem. Eur. J. Mech. 10 (1991) 527-536. | Zbl
,[6] Measure theory and fine properties of functions. CRC Press (1992). | MR | Zbl
and ,[7] Geometric measure theory. Springer-Verlag (1969). | MR | Zbl
,[8] Elliptic Partial Differential Equations of Second Order. Springer-Verlag (1983). | MR | Zbl
and ,[9] Minimal surfaces and functions of bounded variation. Birkhäuser (1986). | MR | Zbl
,[10] Existence and geometric properties of solutions of a free boundary problem in potential theory. J. Reine Angew. Math. 473 (1996) 137-179. | EuDML | MR | Zbl
and ,[11] Existence et régularité pour des problèmes d'optimisation de formes. Ph.D. thesis, université Henri Poincaré Nancy 1 (1997).
,[12] Lipschitz continuity of the state function in a shape optimization problem. J. Convex Anal. 6 (1999) 71-90. | EuDML | MR | Zbl
,[13] On a volume constrained shape optimization problem with nonlinear state equation. (to appear). | MR
, and .[14] Étude d'un problème à frontière libre bidimensionnel. Ph.D. thesis, université Rennes 1 (1994).
,
[15] Plane harmonic measures live on sets of
Cité par Sources :