[Sur la structure des catégories triangulées]
Cet article traite du problème de classification des catégories triangulées sur un corps algébriquement clos
We study the problem of classifying triangulated categories with finite-dimensional morphism spaces and finitely many indecomposables over an algebraically closed field
Keywords: locally finite triangulated category, Calabi-Yau category, Dynkin diagram, Auslander-Reiten quiver, orbit category
Mot clés : catégorie triangulée localement finie, catégorie de Calabi-Yau, diagramme de Dynkin, carquois d'Auslander-Reiten, catégorie d'orbites
@article{BSMF_2007__135_3_435_0, author = {Amiot, Claire}, title = {On the structure of triangulated categories with finitely many indecomposables}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {435--474}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {135}, number = {3}, year = {2007}, doi = {10.24033/bsmf.2542}, mrnumber = {2430189}, zbl = {1158.18005}, language = {en}, url = {https://numdam.org/articles/10.24033/bsmf.2542/} }
TY - JOUR AU - Amiot, Claire TI - On the structure of triangulated categories with finitely many indecomposables JO - Bulletin de la Société Mathématique de France PY - 2007 SP - 435 EP - 474 VL - 135 IS - 3 PB - Société mathématique de France UR - https://numdam.org/articles/10.24033/bsmf.2542/ DO - 10.24033/bsmf.2542 LA - en ID - BSMF_2007__135_3_435_0 ER -
%0 Journal Article %A Amiot, Claire %T On the structure of triangulated categories with finitely many indecomposables %J Bulletin de la Société Mathématique de France %D 2007 %P 435-474 %V 135 %N 3 %I Société mathématique de France %U https://numdam.org/articles/10.24033/bsmf.2542/ %R 10.24033/bsmf.2542 %G en %F BSMF_2007__135_3_435_0
Amiot, Claire. On the structure of triangulated categories with finitely many indecomposables. Bulletin de la Société Mathématique de France, Tome 135 (2007) no. 3, pp. 435-474. doi : 10.24033/bsmf.2542. https://numdam.org/articles/10.24033/bsmf.2542/
[1] « The derived equivalence classification of representation-finite selfinjective algebras », J. Algebra 214 (1999), p. 182-221. | MR | Zbl
-[2] « Functors and morphisms determined by objects », in Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976), Lecture Notes in Pure Appl. Math., vol. 37, Dekker, 1978, p. 1-244. Lecture Notes in Pure Appl. Math., Vol. 37. | MR | Zbl
-[3] -, « Isolated singularities and existence of almost split sequences », in Representation theory, II (Ottawa, Ont., 1984), Lecture Notes in Math., vol. 1178, Springer, 1986, p. 194-242. | MR | Zbl
[4] « McKay quivers and extended Dynkin diagrams », Trans. Amer. Math. Soc. 293 (1986), p. 293-301. | MR | Zbl
& -[5] -, « Cohen-Macaulay and Gorenstein Artin algebras », in Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Progr. Math., vol. 95, Birkhäuser, 1991, p. 221-245. | MR | Zbl
[6] « Representation-finite algebras and multiplicative bases », Invent. Math. 81 (1985), p. 217-285. | MR | Zbl
, , & -[7] « Faisceaux pervers », in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, 1982, p. 5-171. | MR | Zbl
, & -[8] « Deformed preprojective algebras of generalized Dynkin type », Trans. Amer. Math. Soc. 359 (2007), p. 2625-2650. | MR | Zbl
, & -[9] « Calabi-Yau stable module categories of finite type », preprint http://www.mat.uni.torun.pl/preprints/, 2006. | Zbl
& -
[10] -, « Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic
[11] « Tilting theory and cluster combinatorics », Adv. Math. 204 (2006), p. 572-618. | MR | Zbl
, , , & -
[12] « Quivers with relations arising from clusters (
[13] « From triangulated categories to cluster algebras », preprint arXiv:math.RT/0506018, 2005. | MR | Zbl
& -[14] « The Auslander-Reiten quiver of an isolated singularity », in Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), Lecture Notes in Math., vol. 1273, Springer, 1987, p. 244-264. | MR | Zbl
-[15] « On Hochschild cohomology of preprojective algebras. I, II », J. Algebra 205 (1998), p. 391-412, 413-434. | MR | Zbl
& -[16] -, « Preprojective algebras of Dynkin type, periodicity and the second Hochschild cohomology », in Algebras and modules, II (Geiranger, 1996), CMS Conf. Proc., vol. 24, Amer. Math. Soc., 1998, p. 183-193. | MR | Zbl
[17] « Representations of finite-dimensional algebras », in Algebra, VIII, Encyclopaedia Math. Sci., vol. 73, Springer, 1992, With a chapter by B. Keller, p. 1-177. | MR | Zbl
& -[18] « Auslander algebras and initial seeds for cluster algebras », preprint arXiv:math.RT/0506405, 2005. | MR | Zbl
, & -[19] -, « Partial flag varieties and preprojective algebras », arXiv:math.RT/0609138, 2006.
[20] « Rigid modules over preprojective algebras », Invent. Math. 165 (2006), p. 589-632. | MR | Zbl
, & -[21] « On the derived category of a finite-dimensional algebra », Comment. Math. Helv. 62 (1987), p. 339-389. | MR | Zbl
-[22] -, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, 1988. | MR | Zbl
[23] « Binary polyhedral groups and Euclidean diagrams », Manuscripta Math. 31 (1980), p. 317-329. | MR | Zbl
, & -
[24] -, « Vinberg’s characterization of Dynkin diagrams using subadditive functions with application to
[25] « Stable homotopy categories », Bull. Amer. Math. Soc. 74 (1968), p. 28-63. | MR | Zbl
-[26] « Cluster categories and selfinjective algebras: type A », preprint arXiv:math.RT/0610728, 2006.
& -[27] -, « Cluster categories and selfinjective algebras: type D », preprint arXiv:math.RT/0612451, 2006.
[28] « Mutations in triangulated categories and rigid Cohen-Macaulay modules », preprint arXiv:math.RT/0607736, 2006. | MR | Zbl
& -[29] « Derived categories and universal problems », Comm. Algebra 19 (1991), p. 699-747. | MR | Zbl
-[30] -, « On triangulated orbit categories », Doc. Math. 10 (2005), p. 551-581. | MR | Zbl
[31] -, « On differential graded categories », preprint arXiv:math.KT/0601185, 2006. | MR
[32] « Cluster-tilted algebras are Gorenstein and stably Calabi-Yau », preprint arXiv:math.RT/0512471, 2005. | MR | Zbl
& -[33] -, « Acyclic Calabi-Yau categories », preprint arXiv:math.RT/0610594, 2006.
[34] « Sous les catégories dérivées », C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), p. 225-228. | MR | Zbl
& -[35] « Generalized associahedra via quiver representations », Trans. Amer. Math. Soc. 355 (2003), p. 4171-4186. | MR | Zbl
, & -[36] Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, 2001. | MR | Zbl
-[37] « On algebraic Calabi-Yau categories », Thèse, in preparation.
-[38] « Noetherian hereditary abelian categories satisfying Serre duality », J. Amer. Math. Soc. 15 (2002), p. 295-366. | MR | Zbl
& -[39] « Algebren, Darstellungsköcher, Überlagerungen und zurück », Comment. Math. Helv. 55 (1980), p. 199-224. | MR | Zbl
-
[40] -, « Representation-finite self-injective algebras of class
[41] -, « Many algebras with the same Auslander-Reiten quiver », Bull. London Math. Soc. 15 (1983), p. 43-47. | MR | Zbl
[42] -, « Representation-finite self-injective algebras of class
[43] Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer, 1984. | MR | Zbl
-[44] -, « Hereditary triangulated categories », to appear in Comp. Math., 2006.
[45] « On the structure of Calabi-Yau categories with a cluster tilting subcategory », preprint arXiv:math.RT/0607394, 2006. | MR | Zbl
-[46] « Catégories dérivées. Quelques résultats », Lect. Notes Math. 569 (1977), p. 262-311. | Zbl
-[47] -, « Des catégories dérivées des catégories abéliennes », Astérisque (1996), p. 253 pp. (1997), With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis. | Numdam | MR | Zbl
[48] « Relations for the Grothendieck groups of triangulated categories », J. Algebra 257 (2002), p. 37-50. | MR | Zbl
& -[49] -, « Locally finite triangulated categories », J. Algebra 290 (2005), p. 473-490. | MR | Zbl
[50] Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, 1990. | MR | Zbl
-Cité par Sources :