Un sous-groupe p-divisible de la jacobienne de X1(Npr) comme module sur l’algèbre de Hecke
Bulletin de la Société Mathématique de France, Tome 115 (1987), pp. 329-360.
@article{BSMF_1987__115__329_0,
     author = {Tilouine, Jacques},
     title = {Un sous-groupe $p$-divisible de la jacobienne de $X_1(N p_r)$ comme module sur l{\textquoteright}alg\`ebre de {Hecke}},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {329--360},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {115},
     year = {1987},
     doi = {10.24033/bsmf.2081},
     mrnumber = {88m:11043},
     zbl = {0677.14006},
     language = {fr},
     url = {https://numdam.org/articles/10.24033/bsmf.2081/}
}
TY  - JOUR
AU  - Tilouine, Jacques
TI  - Un sous-groupe $p$-divisible de la jacobienne de $X_1(N p_r)$ comme module sur l’algèbre de Hecke
JO  - Bulletin de la Société Mathématique de France
PY  - 1987
SP  - 329
EP  - 360
VL  - 115
PB  - Société mathématique de France
UR  - https://numdam.org/articles/10.24033/bsmf.2081/
DO  - 10.24033/bsmf.2081
LA  - fr
ID  - BSMF_1987__115__329_0
ER  - 
%0 Journal Article
%A Tilouine, Jacques
%T Un sous-groupe $p$-divisible de la jacobienne de $X_1(N p_r)$ comme module sur l’algèbre de Hecke
%J Bulletin de la Société Mathématique de France
%D 1987
%P 329-360
%V 115
%I Société mathématique de France
%U https://numdam.org/articles/10.24033/bsmf.2081/
%R 10.24033/bsmf.2081
%G fr
%F BSMF_1987__115__329_0
Tilouine, Jacques. Un sous-groupe $p$-divisible de la jacobienne de $X_1(N p_r)$ comme module sur l’algèbre de Hecke. Bulletin de la Société Mathématique de France, Tome 115 (1987), pp. 329-360. doi : 10.24033/bsmf.2081. https://numdam.org/articles/10.24033/bsmf.2081/

[1] Asai (T.). - On the Fourier coefficients of automorphic forms at various cusps and some applications to Rankin's convolution. J. Math. Soc. Japan, t. 28, 1976, p. 48-61. | MR | Zbl

[2] Atkin (A. O. L.) and Lehner (J.). - Hecke operators on Гo(m). Math. Ann., t. 185, 1970, p. 134-160. | MR | Zbl

[3] Curtis (C.) and Reiner (I.). - Representation Theory of finite groups and associative algebras, Interscience Publishers John Wiley & Sons, 1966.

[4] Hida (H.). - On congruence divisors of cusp forms as factors of the special values of their zeta functions, Inv. Math., t. 64, 1981, p. 221-262. | MR | Zbl

[5] Hida (H.). - Kummer's criterion for the special values of Hecke L-functions of imaginary quadratic fields and congruences among cusp forms, Inv. Math., t. 66, 1982, p. 415-459. | MR | Zbl

[6] Hida (H.). - Iwasawa modules attached to congruences among cusp forms, Ann. Scient. de l'E.N.S. (à paraître). | Numdam | Zbl

[7] Hida (H.). - Gclois Representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Inv. Math. (à paraître).

[8] Igusa (J.). - Kroneckerian model of fields of elliptic modular functions, Amer. J. Math., t. 81, 1968, p. 561-577. | MR | Zbl

[9] Langlands (R.-P.). - Modular forms and l-adic representations (International Summer School on Modular Functions, Antwerp, 1972). Modular Functions in one one variable II, Lmcture Notes in Mathematics, vol. 349, p. 361-500, Berlin-Heidelberg-New York : Springer, 1973. | Zbl

[10] Li (W.). - Newforms and functional equations, Math. Ann., t. 212, 1975, p. 285-315. | MR | Zbl

[11] Matsumura (H.). - Commutative Algebra, W. A. Benjamin, Inc. 1970. | MR | Zbl

[12] Mazur (B.). - Modular Curves and the Eisenstein Ideal. Publ. Math. I.H.E.S. 47, 1978. | Numdam | Zbl

[13] Mazur (B.) and Katz (N.). - Arithmetic moduli of elliptic curves, Annals of Math. Studies, Nwmber 108. Princeton University Press., 1985. | MR | Zbl

[14] Mazur (B) and Wiles (A.). - Class fields of abelian extensions of Q, Inv. Math., t. 76, 1984, p. 179-330. | MR | Zbl

[15] Mazur (B.) and Wiles (A.). - On p-adic analytic families of Galois Representations (To appear).

[16] Mumford (D.). - Geometric invariant theory, Ergebnisse der Mathematik und Ihrer Grenzgebiete, 36, Springer-Verlag, 1965. | MR | Zbl

[17] Ogg (A.). - On the eigenvalues of Hecke operators, Meth. Ann., t. 79, 1969, p. 101-108. | MR | Zbl

[18] Raynaud (M.). - Specialisation du Foncteur de Picard, Publ. Math. I.H.E.S., 38, 1970, p. 27-76. | Numdam | MR | Zbl

[19] Shimura (G.). - Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten Publishers and Princeton University Press., 1971. | Zbl

[20] Shimura (G.). - Class fields over real quadratic fields and Hecke operators. Ann. of Math., t. 295, 1970, p. 130-190. | MR | Zbl

[21] Tate (J.). - p-divisible Groups, Proceedings of a Conference on Local Fields, Driebergen, 1966, Springer-Verlag, 1967. | Zbl

[22] Wiles (A.). - Modular Curves and the Class Group of Q (ξp), Inv. Math., 58, 1980, p. 1-35. | MR | Zbl

  • Yan, Dong Stable lattices in modular Galois representations and Hida deformation, Journal of Number Theory, Volume 197 (2019), p. 62 | DOI:10.1016/j.jnt.2018.06.014
  • Cais, Bryden The geometry of Hida families II: -adic -modules and -adic Hodge theory, Compositio Mathematica, Volume 154 (2018) no. 4, p. 719 | DOI:10.1112/s0010437x17007680
  • Cais, Bryden The geometry of Hida families I: Λ-adic de Rham cohomology, Mathematische Annalen, Volume 372 (2018) no. 1-2, p. 781 | DOI:10.1007/s00208-017-1608-1
  • Hida, Haruzo Λ-adic Barsotti–Tate groups, Pacific Journal of Mathematics, Volume 268 (2014) no. 2, p. 283 | DOI:10.2140/pjm.2014.268.283
  • Sharifi, Romyar A reciprocity map and the two-variable p-adic L-function, Annals of Mathematics, Volume 173 (2011) no. 1, p. 251 | DOI:10.4007/annals.2011.173.1.7
  • Ochiai, Tadashi Control Theorem for Greenberg's Selmer Groups of Galois Deformations, Journal of Number Theory, Volume 88 (2001) no. 1, p. 59 | DOI:10.1006/jnth.2000.2611
  • Hida, Haruzo Adjoint selmer groups as Iwasawa modules, Israel Journal of Mathematics, Volume 120 (2000) no. 2, p. 361 | DOI:10.1007/bf02834845
  • Khare, Chandrashekhar Multiplicities of modp Galois representations, Manuscripta Mathematica, Volume 95 (1998) no. 1, p. 181 | DOI:10.1007/bf02678024
  • Tilouine, Jacques Hecke Algebras and the Gorenstein Property, Modular Forms and Fermat’s Last Theorem (1997), p. 327 | DOI:10.1007/978-1-4612-1974-3_10
  • Mazur, B.; Tilouine, J. Représentations galoisiennes, différentielles de Kähler et « conjectures principales », Publications mathématiques de l'IHÉS, Volume 71 (1990) no. 1, p. 65 | DOI:10.1007/bf02699878
  • Tilouine, J. Sur la conjecture principale anticyclotomique, Duke Mathematical Journal, Volume 59 (1989) no. 3 | DOI:10.1215/s0012-7094-89-05929-2

Cité par 11 documents. Sources : Crossref