In the paper [2] we constructed (co)homology theories on the category of smooth schemes which share some of the some of the defining properties of the (co)homology theories induced by the Morava
@article{ASNSP_2009_5_8_2_369_0, author = {Borghesi, Simone}, title = {Algebraic {Morava} $K$-theory spectra over perfect fields}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {369--390}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {2}, year = {2009}, mrnumber = {2548251}, zbl = {1179.14019}, language = {en}, url = {https://numdam.org/item/ASNSP_2009_5_8_2_369_0/} }
TY - JOUR AU - Borghesi, Simone TI - Algebraic Morava $K$-theory spectra over perfect fields JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 369 EP - 390 VL - 8 IS - 2 PB - Scuola Normale Superiore, Pisa UR - https://numdam.org/item/ASNSP_2009_5_8_2_369_0/ LA - en ID - ASNSP_2009_5_8_2_369_0 ER -
%0 Journal Article %A Borghesi, Simone %T Algebraic Morava $K$-theory spectra over perfect fields %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 369-390 %V 8 %N 2 %I Scuola Normale Superiore, Pisa %U https://numdam.org/item/ASNSP_2009_5_8_2_369_0/ %G en %F ASNSP_2009_5_8_2_369_0
Borghesi, Simone. Algebraic Morava $K$-theory spectra over perfect fields. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 369-390. https://numdam.org/item/ASNSP_2009_5_8_2_369_0/
[1] “Algebraic Morava
[2] Algebraic Morava
[3] “Rings, Modules, and Algebras in Stable Homotopy Theory”, Mathematical Surveys and Monographs, Vol. 47, American Mathematical Society, Providence, RI, 1997, xii–249. | MR | Zbl
, , and ,[4] Motivic symmetric spectra, Doc. Math. 5 (2000), 445–552. | EuDML | MR | Zbl
,[5] The Steenrod Algebra and its Dual, Ann. of Math. (2) 67 (1958), 150–171. | MR | Zbl
,[6] On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264. | MR | Zbl
and ,[7] J. Milnor and J. Stasheff, ‘Characteristic Classes”, Princeton University Press and University of Tokyo Press, Princeton, New Jersey, 1974. | MR | Zbl
[8]
[9] “
[10] Bloch-Kato conjecture and motivic cohomology with finite coefficients, In: “The arithmetic and geometry of algebraic cycles” (Banff, AB, 1998), 117–189, Nato Sci. Ser. C Math. Phys. Sci., Vol. 548, Kluwer Acad. Publ., Dordrecht, 2000. | MR | Zbl
and ,[11] “Algebraic Topology-Homotopy and Homology”, Springer-Verlag, New York-Heidelberg, 1975, xii–526. | MR | Zbl
,[12] Lectures on motivic cohomology 2000/2001 (written by Pierre Deligne). http://www.math.uiuc.edu/K-theory/0527/ | Zbl
,[13] Reduced power operation in motivic cohomology, Publ. Math. Inst. Hautes Étude Sci. 98 (2003), 1–57. | EuDML | Numdam | MR | Zbl
,
[14] Motivic cohomology with
[15] On motivic cohomology with
[16] Motivic Eilenberg-MacLane spaces, http://www.math.uiuc.edu/K-theory/0864/. | Numdam | Zbl
,