[Décroissance de l'énergie locale pour un certain nombre d'équations d'évolution sur des variétés asymptotiquement euclidiennes]
Soit
Let
Keywords: local energy decay, low frequencies, asymptotically euclidean manifolds, Mourre theory
Mot clés : décroissance de l'énergie locale, basses fréquences, variétés asymptotiquement euclidiennes, théorie de Mourre
@article{ASENS_2012_4_45_2_311_0, author = {Bony, Jean-Fran\c{c}ois and H\"afner, Dietrich}, title = {Local energy decay for several evolution equations on asymptotically euclidean manifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {311--335}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 45}, number = {2}, year = {2012}, doi = {10.24033/asens.2166}, mrnumber = {2977621}, zbl = {1263.58008}, language = {en}, url = {https://numdam.org/articles/10.24033/asens.2166/} }
TY - JOUR AU - Bony, Jean-François AU - Häfner, Dietrich TI - Local energy decay for several evolution equations on asymptotically euclidean manifolds JO - Annales scientifiques de l'École Normale Supérieure PY - 2012 SP - 311 EP - 335 VL - 45 IS - 2 PB - Société mathématique de France UR - https://numdam.org/articles/10.24033/asens.2166/ DO - 10.24033/asens.2166 LA - en ID - ASENS_2012_4_45_2_311_0 ER -
%0 Journal Article %A Bony, Jean-François %A Häfner, Dietrich %T Local energy decay for several evolution equations on asymptotically euclidean manifolds %J Annales scientifiques de l'École Normale Supérieure %D 2012 %P 311-335 %V 45 %N 2 %I Société mathématique de France %U https://numdam.org/articles/10.24033/asens.2166/ %R 10.24033/asens.2166 %G en %F ASENS_2012_4_45_2_311_0
Bony, Jean-François; Häfner, Dietrich. Local energy decay for several evolution equations on asymptotically euclidean manifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 2, pp. 311-335. doi : 10.24033/asens.2166. https://numdam.org/articles/10.24033/asens.2166/
[1]
[2] Hidden symmetries and decay for the wave equation on the Kerr spacetime, preprint arXiv:0908.2265.
& ,[3] On a regularizing effect of Schrödinger type groups, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 1-14. | Numdam | MR | Zbl
,[4] Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 87-92. | MR | Zbl
, & ,[5] Low frequency resolvent estimates for long range perturbations of the Euclidean Laplacian, Math. Res. Lett. 17 (2010), 301-306. | MR | Zbl
& ,[6] The semilinear wave equation on asymptotically Euclidean manifolds, Comm. Partial Differential Equations 35 (2010), 23-67. | MR | Zbl
& ,[7] Improved local energy decay for the wave equation on asymptotically Euclidean odd dimensional manifolds in the short range case, preprint arXiv:1107.5251. | Zbl
& ,[8] Low frequency estimates and local energy decay for asymptotically Euclidean Laplacians, Comm. Partial Differential Equations 36 (2011), 1239-1286. | MR | Zbl
,[9] Low frequency estimates for long range perturbations in divergence form, Canad. J. Math. 63 (2011), 961-991. | MR | Zbl
,[10] Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math. 180 (1998), 1-29. | MR | Zbl
,[11] Applications of cutoff resolvent estimates to the wave equation, Math. Res. Lett. 16 (2009), 577-590. | MR | Zbl
,[12] Lectures on black holes and linear waves, preprint arXiv:0811.0354. | MR
& ,[13] Gluing semiclassical resolvent estimates, or the importance of being microlocal, Int. Math. Res. Notices (2012), doi:10.1093/imrn/rnr255.
& ,[14] Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series 268, Cambridge Univ. Press, 1999. | MR | Zbl
& ,[15] Exhaustion functions and the spectrum of Riemannian manifolds, Indiana Univ. Math. J. 46 (1997), 505-527. | MR | Zbl
,[16] On pointwise decay of linear waves on a Schwarzschild black hole background, Comm. Math. Phys. 309 (2012), 51-86. | MR | Zbl
, & ,[17] Decay of solutions of the wave equation in the Kerr geometry, Comm. Math. Phys. 264 (2006), 465-503. | MR | Zbl
, , & ,[18] Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 121-123. | MR | Zbl
& ,[19] Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. I, Math. Ann. 341 (2008), 859-896. | MR | Zbl
& ,[20] Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II, Ann. Inst. Fourier 59 (2009), 1553-1610. | Numdam | MR | Zbl
& ,[21] Minimal escape velocities, Comm. Partial Differential Equations 24 (1999), 2279-2295. | MR | Zbl
, & ,[22] Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J. 46 (1979), 583-611. | MR | Zbl
& ,[23] Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré Phys. Théor. 41 (1984), 207-225. | Numdam | MR | Zbl
, & ,[24] Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle, Comm. Pure Appl. Math. 16 (1963), 477-486. | MR | Zbl
, & ,[25] Scattering theory, second éd., Pure and Applied Mathematics 26, Academic Press Inc., 1989. | MR | Zbl
& ,[26] Singularities of boundary value problems. I, Comm. Pure Appl. Math. 31 (1978), 593-617. | MR | Zbl
& ,[27] Quantum decay rates in chaotic scattering, Acta Math. 203 (2009), 149-233. | MR | Zbl
& ,[28] Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function, Anal. PDE 3 (2010), 427-489. | MR | Zbl
& ,[29] Solutions of the wave equation with localized energy, Comm. Pure Appl. Math. 22 (1969), 807-823. | MR | Zbl
,[30] Local decay of scattering solutions to Schrödinger's equation, Comm. Math. Phys. 61 (1978), 149-168. | MR | Zbl
,[31] Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978. | MR | Zbl
& ,[32] Decay for the wave and Schrödinger evolutions on manifolds with conical ends. I, Trans. Amer. Math. Soc. 362 (2010), 19-52. | MR | Zbl
, & ,[33] Decay for the wave and Schrödinger evolutions on manifolds with conical ends. II, Trans. Amer. Math. Soc. 362 (2010), 289-318. | MR | Zbl
, & ,[34] Resonance expansions of scattered waves, Comm. Pure Appl. Math. 53 (2000), 1305-1334. | MR | Zbl
& ,[35] Local decay of waves on asymptotically flat stationary space-times, preprint arXiv:0910.5290. | MR | Zbl
,[36] A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not. 2011 (2011), 248-292. | MR | Zbl
& ,[37] Partial differential equations. I, Applied Mathematical Sciences 115, Springer, 1996. | MR | Zbl
,[38] Asymptotic methods in equations of mathematical physics, Gordon & Breach Science Publishers, 1989. | Zbl
,[39] Positive commutators at the bottom of the spectrum, J. Funct. Anal. 259 (2010), 503-523. | MR | Zbl
& ,[40] Time-decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré Phys. Théor. 47 (1987), 25-37. | EuDML | Numdam | MR | Zbl
,[41] Asymptotic expansion in time of the Schrödinger group on conical manifolds, Ann. Inst. Fourier 56 (2006), 1903-1945. | EuDML | Numdam | MR | Zbl
,[42] Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré 12 (2011), 1349-1385. | MR | Zbl
& ,Cité par Sources :